期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用用户不偏好项目属性提高项目协同过滤算法效率和精度 被引量:2
1
作者 文诗琪 王成 +3 位作者 苏芳芳 刘技峰 陈叶旺 郑国旗 《小型微型计算机系统》 CSCD 北大核心 2017年第8期1735-1740,共6页
针对传统项目协同过滤算法选择最近邻时需要计算待评分项目与所有其它项目之间的相似度而导致算法效率和推荐精度低的缺点,提出一种基于用户不偏好项目属性的项目协同过滤算法.该算法通过对用户评分偏低的项目属性进行归一化计数并设定... 针对传统项目协同过滤算法选择最近邻时需要计算待评分项目与所有其它项目之间的相似度而导致算法效率和推荐精度低的缺点,提出一种基于用户不偏好项目属性的项目协同过滤算法.该算法通过对用户评分偏低的项目属性进行归一化计数并设定阈值,从而将其分为用户不偏好项目属性和非用户不偏好项目属性.只有在其它项目与待评分项目同时具有用户不偏好项目属性或同时都不具有用户不偏好项目属性时,该项目才作为待评分项目最近邻的备选项,才需要计算两项目之间的相似度.该算法通过减少备选最近邻项目集大小和需要计算项目相似度的个数,提高了算法效率;与此同时,由于不合理项目已提前从备选最近邻项目集中排除,选取作为评分预测的最近邻会更为合理,推荐精度也会提高.在数据极度稀疏的Movie Lens-100K数据集上的五折交叉验证结果表明,相较于传统的项目协同过滤算法、基于项目偏好相似的项目协同过滤算法,该算法有更高的效率、精度和覆盖率. 展开更多
关键词 项目协同过滤 用户不偏好项目属性 备选最近邻项目 时间效率 推荐精度
在线阅读 下载PDF
基于高斯pLSA模型与项目的协同过滤混合推荐 被引量:5
2
作者 陈登科 孔繁胜 《计算机工程与应用》 CSCD 北大核心 2010年第23期209-211,234,共4页
协同过滤是推荐系统中常用的一种技术。以往的推荐算法往往只从用户或商品的角度单一地进行推荐,在推荐准确率上存在瓶颈和局限性。提出了一种新的混合推荐方法——结合基于高斯概率潜在语义分析模型与改进的基于项目的协同过滤算法,通... 协同过滤是推荐系统中常用的一种技术。以往的推荐算法往往只从用户或商品的角度单一地进行推荐,在推荐准确率上存在瓶颈和局限性。提出了一种新的混合推荐方法——结合基于高斯概率潜在语义分析模型与改进的基于项目的协同过滤算法,通过建立用户群体混合模型和基于目标项目的邻居集进行预测推荐。实验证明该算法与其他协同过滤算法相比具有更高的准确率。 展开更多
关键词 概率潜在语义分析 高斯模型 基于项目协同过滤 基于模型的协同过滤 混合推荐
在线阅读 下载PDF
加入标签迁移的跨领域项目推荐算法 被引量:4
3
作者 葛梦凡 刘真 +1 位作者 王娜娜 田靖玉 《计算机科学》 CSCD 北大核心 2019年第10期1-6,共6页
大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,... 大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,考虑结合其他知识来辅助完成目标领域的学习任务。利用用户异构行为改善推荐结果,正是近年来的新兴研究热点之一。在用户数据中,标签与用户的真实偏好相关,通常能够反映用户或项目的部分隐式特征。通过结合迁移学习及用户标签数据,文中提出了基于标签迁移的跨领域项目推荐算法ITTCF(Item-based Tag Transfer Collaborative Filtering)。该算法摒弃了在跨领域迁移推荐中仅对评分模式进行挖掘迁移的单一辅助方式,将用户行为反馈与数字评分相结合,融合了评分模式和标签这两种异构用户行为。在多个数据集中的实验结果均表明,ITTCF具有更好的RMSE和MAE值,较传统算法分别提升了1.61%~6.67%和1.97%~8.83%。 展开更多
关键词 迁移学习 跨领域推荐 标签 基于项目协同过滤
在线阅读 下载PDF
OHR:一种基于本体的个性化混合服务推荐模型
4
作者 潘拓宇 朱珍民 +2 位作者 滕吉 叶剑 曾庆峰 《中文信息学报》 CSCD 北大核心 2010年第2期84-90,共7页
随着网络信息量的日益增加,为用户提供个性化服务是一种趋势。该文通过建立一个通用的服务本体模型,将项目集合划分到多个服务子类中,经过概率计算得到用户的兴趣分布,并在此基础上提出了一个结合内容过滤和项目协同过滤的个性化混合服... 随着网络信息量的日益增加,为用户提供个性化服务是一种趋势。该文通过建立一个通用的服务本体模型,将项目集合划分到多个服务子类中,经过概率计算得到用户的兴趣分布,并在此基础上提出了一个结合内容过滤和项目协同过滤的个性化混合服务推荐模型(OHR)。实验结果表明了该模型在服务推荐上具有较高的准确率和发现用户新兴趣的能力。 展开更多
关键词 计算机应用 中文信息处理 服务本体 混合个性化服务推荐模型 项目协同过滤 概率计算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部