期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8n的安格斯牛面部识别
1
作者 胡立俊 李旭 李国亮 《华中农业大学学报》 北大核心 2025年第2期39-48,共10页
为解决安格斯牛独特的黑色毛发导致其面部特征区分困难的问题,采用基于YOLOv8n的改进方法,实现圈养环境中的安格斯牛准确、非接触式的面部识别。首先构建了一个包含200头安格斯牛在不同生长阶段的11 000张面部图像的数据集;其次,引入创... 为解决安格斯牛独特的黑色毛发导致其面部特征区分困难的问题,采用基于YOLOv8n的改进方法,实现圈养环境中的安格斯牛准确、非接触式的面部识别。首先构建了一个包含200头安格斯牛在不同生长阶段的11 000张面部图像的数据集;其次,引入创新的增强感受野特征融合模块,该模块增强了模型对关键特征的关注;再次,设计了新型轻量化检测头LPCDH,用于安格斯牛的面部特征识别;最后,采用组泰勒剪枝方法,通过估计神经元的重要性剪除不重要的神经元,从而减少计算成本和内存占用,提升模型的部署效率。试验结果显示,改进后的模型平均识别准确率达到92.6%。与常用的SSD、YOLOv5n、YOLOv8s、YOLOv8m、YOLOv9t、YOLOv10n、RT-Detr和Mamba-YOLO模型相比,准确率分别提高了11.5、3.8、1.8、1.9、5.1、3.9、3.7和2.4百分点。与原始YOLOv8n模型相比,所设计模型在4折交叉验证中的准确率平均提高了3.1百分点。结果表明,该模型在内存消耗和计算需求方面实现了轻量化,特别适合在移动端和实际应用中的实时识别,可显著提高安格斯牛面部识别的准确率和效率。 展开更多
关键词 安格斯牛 YOLOv8n 剪枝 牛只识别 面部检测模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部