期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合注意机制的多尺度自适应空洞卷积面部情感识别方法
1
作者 王春影 孟天宇 +2 位作者 张震 葛雄心 杨继伟 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期90-97,共8页
针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale di... 针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale dilated convolution,DAM-ADCNN)。模型通过双分支注意力机制生成特征映射,表征面部动作单元的局部和全局分布及关联关系;利用多尺度空洞卷积提取面部不连续动作单元的关键特征;采用自适应方式动态调整不同尺度关联特征的权重,以有效减少无用信息的干扰。结果表明,DAM-ADCNN模型在情感识别任务中的表现优于现有方法。在DEAP数据集的唤醒和效价维度上,模型的识别准确率分别提升了3.66%和3.99%。同时,在CK+数据集上,模型的识别准确率提高了3.93%。这些结果证明了DAM-ADCNN模型在面部表情情感识别中的有效性。 展开更多
关键词 面部情感识别 双分支注意力机制 空洞卷积 自适应权重
在线阅读 下载PDF
基于ROI-KNN卷积神经网络的面部表情识别 被引量:53
2
作者 孙晓 潘汀 任福继 《自动化学报》 EI CSCD 北大核心 2016年第6期883-891,共9页
深度神经网络已经被证明在图像、语音、文本领域具有挖掘数据深层潜在的分布式表达特征的能力.通过在多个面部情感数据集上训练深度卷积神经网络和深度稀疏校正神经网络两种深度学习模型,对深度神经网络在面部情感分类领域的应用作了对... 深度神经网络已经被证明在图像、语音、文本领域具有挖掘数据深层潜在的分布式表达特征的能力.通过在多个面部情感数据集上训练深度卷积神经网络和深度稀疏校正神经网络两种深度学习模型,对深度神经网络在面部情感分类领域的应用作了对比评估.进而,引入了面部结构先验知识,结合感兴趣区域(Region of interest,ROI)和K最近邻算法(K-nearest neighbors,KNN),提出一种快速、简易的针对面部表情分类的深度学习训练改进方案—ROI-KNN,该训练方案降低了由于面部表情训练数据过少而导致深度神经网络模型泛化能力不佳的问题,提高了深度学习在面部表情分类中的鲁棒性,同时,显著地降低了测试错误率. 展开更多
关键词 卷积神经网络 面部情感识别 模型泛化 先验知识
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部