The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
In order to simulate the stress of turbine rotor in aeroengine, based on the ANSYS, the simplification model of the turbine rotor was built up. By applying the simplification model, the contact stress of turbine rotor...In order to simulate the stress of turbine rotor in aeroengine, based on the ANSYS, the simplification model of the turbine rotor was built up. By applying the simplification model, the contact stress of turbine rotor was computed. The maximum contact stress appears at the chamfer below the flank, which agrees with experiment result. At the same time, the contact stress changing with the flank angle and friction coefficient was calculated, The results show that the contact stress in the flank increases slowly with the increase of flank angle; with the friction coefficient increasing, the contact stress in flank length decreases; the contact stress will not change when the friction coefficient is over 0.25.展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
基金Foundation item: Project(1774-107101027) supported by the National Defense Fund of China Project(1343-74236000006) supported by the Graduate Foundation of Flunan Province, China
文摘In order to simulate the stress of turbine rotor in aeroengine, based on the ANSYS, the simplification model of the turbine rotor was built up. By applying the simplification model, the contact stress of turbine rotor was computed. The maximum contact stress appears at the chamfer below the flank, which agrees with experiment result. At the same time, the contact stress changing with the flank angle and friction coefficient was calculated, The results show that the contact stress in the flank increases slowly with the increase of flank angle; with the friction coefficient increasing, the contact stress in flank length decreases; the contact stress will not change when the friction coefficient is over 0.25.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.