提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最...提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题,也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时,采用基于ADMM非负矩阵分解算法对噪声频谱进行训练,提取噪声字典,保存其作为增强阶段的先验信息;增强时,通过稀疏非负矩阵分解算法,从带噪语音频谱中对语音字典和语音编码进行估计,重构原始干净的语音,实现语音增强。实验表明,该算法速度更快,增强后语音的失真更小,尤其在瞬时噪声环境下效果显著。展开更多
颜色迁移是组织病理学图像颜色预处理中的重要环节.为了解决颜色迁移过程中某些重要结构颜色改变的问题,在保结构颜色迁移(structure-preserving color normalization,SPCN)算法基础上融合聚类过程,并结合稀疏非负矩阵分解(sparse non-n...颜色迁移是组织病理学图像颜色预处理中的重要环节.为了解决颜色迁移过程中某些重要结构颜色改变的问题,在保结构颜色迁移(structure-preserving color normalization,SPCN)算法基础上融合聚类过程,并结合稀疏非负矩阵分解(sparse non-negative matrix factorization,SNMF)提出K均值稀疏非负矩阵分解基组合(K-means and SNMF basis combination,KSBC)算法.首先通过K均值算法对图像聚类,根据聚类中心识别细胞结构;然后求解稀疏非负矩阵分解模型得到染色基和结构矩阵,根据聚类结果对结构矩阵和染色基准确组合.KSBC算法承袭了SPCN算法的特性,又能灵活地迁移和保留原图像结构颜色.在组织病理学图像数据库中进行对比实验,KSBC算法在图像质量评估指标上优于直方图匹配,Reinhard,Macenko,SPCN和高阶矩算法,并提高残差神经网络的泛化性能.展开更多
文摘提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题,也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时,采用基于ADMM非负矩阵分解算法对噪声频谱进行训练,提取噪声字典,保存其作为增强阶段的先验信息;增强时,通过稀疏非负矩阵分解算法,从带噪语音频谱中对语音字典和语音编码进行估计,重构原始干净的语音,实现语音增强。实验表明,该算法速度更快,增强后语音的失真更小,尤其在瞬时噪声环境下效果显著。
文摘颜色迁移是组织病理学图像颜色预处理中的重要环节.为了解决颜色迁移过程中某些重要结构颜色改变的问题,在保结构颜色迁移(structure-preserving color normalization,SPCN)算法基础上融合聚类过程,并结合稀疏非负矩阵分解(sparse non-negative matrix factorization,SNMF)提出K均值稀疏非负矩阵分解基组合(K-means and SNMF basis combination,KSBC)算法.首先通过K均值算法对图像聚类,根据聚类中心识别细胞结构;然后求解稀疏非负矩阵分解模型得到染色基和结构矩阵,根据聚类结果对结构矩阵和染色基准确组合.KSBC算法承袭了SPCN算法的特性,又能灵活地迁移和保留原图像结构颜色.在组织病理学图像数据库中进行对比实验,KSBC算法在图像质量评估指标上优于直方图匹配,Reinhard,Macenko,SPCN和高阶矩算法,并提高残差神经网络的泛化性能.