期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于NMF后验特征优化的语音查询样例检测
1
作者 曹建凯 张连海 李勃昊 《数据采集与处理》 CSCD 北大核心 2017年第6期1198-1207,共10页
提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)后验特征优化和修正分段动态时间规整(Segmental dynamic time warping,SDTW)检索的无监督语音查询样例检测方法。该方法首先应用频域线性预测(Frequency domain linear... 提出一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)后验特征优化和修正分段动态时间规整(Segmental dynamic time warping,SDTW)检索的无监督语音查询样例检测方法。该方法首先应用频域线性预测(Frequency domain linear prediction,FDLP)声学特征参数代替梅尔频率倒谱系数(Mel-frequency cepstral coefficients,MFCCs)训练高斯混合模型(Gaussian mixture model,GMM)模型,然后使用NMF算法对高斯后验特征矩阵进行分解,将得到的基矩阵作为子空间变换矩阵对原始后验特征投影,投影可以突出特征中主要分量,平滑距离矩阵。在检索阶段,使用多相邻输出得分对最佳匹配得分进行修正,用于代替标准SDTW算法的1-best输出得分。实验结果表明,在不增加检索时间的情况下,该方法相比应用MFCCs和FDLP特征的基线系统性能提升明显,检索精度分别相对提升了18.6%和18.1%。 展开更多
关键词 无监督 查询样例检测 后验特征 非负矩阵分解优化 修正分段动态时间规整
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部