-
题名药物结晶中的经典与非经典结晶路径
- 1
-
-
作者
宋舒虹
姚昌林
王蕾
曲亚倩
陶绪堂
-
机构
山东大学
-
出处
《人工晶体学报》
CAS
北大核心
2021年第4期669-684,共16页
-
基金
国家自然科学基金(51772170,51932004,61975098)
高等学校学科创新引智计划(111计划2.0,PB2018013)。
-
文摘
晶体的结晶路径分为经典结晶路径和非经典结晶路径。经典结晶路径往往涉及一些简单的化学结构,晶体的成核、生长是通过单体的依次添加实现的,经过长期研究,目前研究人员已对其有了较为深刻的理解并形成了一套相对完善的理论体系;但对于非经典的结晶路径,由于涉及复杂中间态粒子的形成和多步结晶过程,尚未获得全面、统一的理论支持。在药物结晶领域,有机分子构象自由度的引入增加了体系的复杂性,分子间弱的相互作用使得固态药物分子存在多晶型现象。由于药物的理化性质及生物利用度与其晶型息息相关,同时,药物结晶过程中出现的一些复杂中间态粒子往往会改变最终得到的药物晶型,因此迫切需要加强对药物晶体成核和生长路径的研究,以期发展能实现对药物晶体成核和生长过程主动控制的方法。本文简要综述了目前药物在溶液或熔体中结晶的经典与非经典结晶路径,包括奥斯特瓦尔德阶段定律、独立成核、交叉成核。从溶液化学的角度看,分子在浓溶液中会通过自组装形成结构合成子,成核与溶液中的生长单元、结构合成子密切相关。从分子水平上探索溶液中有关分子运动的信息、分析各体系下晶核与结构合成子之间的关系是区分两种结晶路径的关键所在,非经典结晶在药物结晶领域是机遇也是挑战。
-
关键词
药物结晶
多晶型
经典结晶路径
非经典结晶路径
晶体成核和生长
分子运动
-
Keywords
pharmaceutical crystallization
polymorphism
classical crystallization pathway
non-classical crystallization pathway
crystal nucleation and growth
molecular motion
-
分类号
TQ460.1
[化学工程—制药化工]
O74
[理学—晶体学]
-
-
题名介晶半导体材料的合成及应用研究进展
被引量:1
- 2
-
-
作者
孙健武
葛美英
尹桂林
张芳
何丹农
-
机构
上海交通大学材料科学与工程学院
纳米技术及应用国家工程研究中心
-
出处
《材料导报》
EI
CAS
CSCD
北大核心
2019年第7期1119-1124,共6页
-
基金
上海青年科技启明星计划项目(16QB1402400)
国家自然科学基金(21677095)~~
-
文摘
传统半导体纳米材料大部分为多晶结构或单晶结构。而介晶是一类由初级纳米颗粒以结晶学有序的方式自组装而成的纳米粒子超结构,具有类似单晶的原子结构和散射特征,既保留着初级纳米颗粒的晶界,又表现出强烈的各向异性,从而具有与多晶和单晶均不同的独特结构与性能。例如,介晶结构中的初级纳米颗粒以一定的方式相互连接,与无序堆积的多晶相比,具有极高的结晶性,甚至接近单晶,能够有效减小载流子在材料内部的复合概率;初级纳米颗粒之间的晶界并未完全消失,存在一定的空隙,具有较高的空隙率和比表面积以提供更多的活性位点;初级纳米颗粒在定向吸附过程中有序地取向排列,暴露出高能晶面,显著提高了其反应活性。金属氧化物半导体材料在光催化、电化学和气敏等领域应用广泛,其反应机理均是发生在材料表面的气-液、气-气、气-固反应,因而均需要材料具有大的比表面积和较高的表面活性。而介晶结构是以纳米颗粒作为基本构筑单元的非经典结晶产物,具有比表面积大、孔隙率高、表面活性高等优点,有望获得远超过传统材料的优异性能,因此近年来介晶结构金属氧化物半导体的制备成为了研究热点。研究者们基于物理或者化学驱动的纳米架构自组装过程,通过改进传统制备工艺,如水热法、溶剂热法、离子热法等,成功调控纳米材料成核、生长的方式,制备出具有介晶结构的TiO_2、ZnO、CuO、SnO_2等半导体材料,并且通过优化制备工艺,可以调节材料的比表面积、孔隙率和表面活性。进一步分析介晶结构与性能的构效关系,对推广介晶结构材料的应用具有重大的指导意义。但是目前介晶的研究还处于起步阶段,各种组分、形貌和结构的介晶的合成、结晶理论的基础研究以及材料的应用开发都还有待进一步探索。本文归纳了介晶半导体材料的研究进展,包括制备方法及不同制备方法所获得材料的特征及优缺点;介绍了半导体介晶材料在光催化性能、电化学性能和气敏性能等领域的应用现状,总结了介晶结构与性能的构效关系,对介晶结构的发展方向进行了展望并指出了其面临的问题。
-
关键词
介晶结构
非经典结晶
三维超结构
半导体材料
高能晶面
-
Keywords
mesocrystals structure
non-classical crystallization
three-dimensional superstructure
semiconductor materials
high-energy surface
-
分类号
TB34
[一般工业技术—材料科学与工程]
-