期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化最小二乘支持向量机的非线性AVO反演 被引量:11
1
作者 谢玮 王彦春 +3 位作者 刘建军 苏建龙 毛庆辉 何润 《石油地球物理勘探》 EI CSCD 北大核心 2016年第6期1187-1194,1052,共8页
为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二... 为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二乘支持向量机方法建立反射振幅与弹性参数之间的非线性模型;最后以此非线性模型对地震道集数据进行反演。模型数据和实际资料的反演结果表明,该方法克服了常规广义线性AVO反演在远炮检距及弹性参数纵向变化大等情况下的缺陷,可直接从实际地震道集数据中提取较高精度的地层弹性参数,具有快速稳健、抗噪能力强的优点。 展开更多
关键词 非线性avo反演 粒子群算法 最小二乘支持向量机 广义线性avo反演
在线阅读 下载PDF
基于混合智能优化算法的非线性AVO反演 被引量:10
2
作者 方中于 王丽萍 +1 位作者 杜家元 梁立锋 《石油地球物理勘探》 EI CSCD 北大核心 2017年第4期797-804,共8页
针对常规叠前AVO反演存在强烈依赖于初始模型、易陷入局部最优值等问题,对基本遗传算法进行了自适应改进,然后将改进遗传算法与粒子群算法相结合,发展了遗传—粒子群算法混合的GA-PSO协同进化智能优化算法;对比改进遗传算法、粒子群算法... 针对常规叠前AVO反演存在强烈依赖于初始模型、易陷入局部最优值等问题,对基本遗传算法进行了自适应改进,然后将改进遗传算法与粒子群算法相结合,发展了遗传—粒子群算法混合的GA-PSO协同进化智能优化算法;对比改进遗传算法、粒子群算法及GA-PSO协同进化算法反演的理论模型合成地震记录的纵波速度、横波速度及密度,表明后者具有精确的反演结果及更强的稳定性和抗噪能力;最后利用GA-PSO协同进化算法对实际地震数据进行叠前AVO非线性反演,验证了算法的应用效果和适用性。 展开更多
关键词 遗传算法 粒子群算法 混合智能优化算法 非线性avo反演
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部