为了减小车辆振动,提高车辆乘坐舒适性和操纵稳定性,将惯容器与非线性能量汇相结合,构建惯容非线性能量汇(Nonlinear Energy Sink Inerter,NESI),并将其运用于车辆悬架和座椅悬架,进一步提出一种基于遗传算法的无模型自适应控制方法(Mod...为了减小车辆振动,提高车辆乘坐舒适性和操纵稳定性,将惯容器与非线性能量汇相结合,构建惯容非线性能量汇(Nonlinear Energy Sink Inerter,NESI),并将其运用于车辆悬架和座椅悬架,进一步提出一种基于遗传算法的无模型自适应控制方法(Model-free Adaptive Control,MFAC)。研究了采用MFAC方法的耦合NESI的车-座椅系统在路面随机激励下的动态特性,并与被动系统和比例积分微分(Proportional Integral Derivative,PID)控制系统进行对比。结果表明,与车-座椅被动系统相比,采用MFAC方法的车-座椅系统的车身垂直加速度与座椅垂直加速度均方根值在低中高车速下都显著减小;与PID控制相比,车身垂直加速度、座椅垂直加速度、悬架动行程和轮胎动载荷均方根值在低、中、高车速下都有所降低。展开更多
为提高提高多机电力系统的暂态稳定性,该文首先建立了静止无功补偿器(static var compensator,SVC)系统的一个含有时变参数不确定性的二阶非线性动态模型,然后在SVC动态模型的基础上,利用自适应控制技术和鲁棒控制技术设计了SVC系统的...为提高提高多机电力系统的暂态稳定性,该文首先建立了静止无功补偿器(static var compensator,SVC)系统的一个含有时变参数不确定性的二阶非线性动态模型,然后在SVC动态模型的基础上,利用自适应控制技术和鲁棒控制技术设计了SVC系统的控制器。为了验证所设计的控制器的有效性,以一个经典的三机九母线电力系统作为测试系统,对鲁棒自适应SVC控制器与PID SVC控制器和反馈线性化SVC控制器分别进行了比较研究。仿真结果表明,与PID SVC控制器和反馈线性化SVC控制器相比,所提出的鲁棒自适应SVC控制器具有良好的性能。展开更多
文摘为了减小车辆振动,提高车辆乘坐舒适性和操纵稳定性,将惯容器与非线性能量汇相结合,构建惯容非线性能量汇(Nonlinear Energy Sink Inerter,NESI),并将其运用于车辆悬架和座椅悬架,进一步提出一种基于遗传算法的无模型自适应控制方法(Model-free Adaptive Control,MFAC)。研究了采用MFAC方法的耦合NESI的车-座椅系统在路面随机激励下的动态特性,并与被动系统和比例积分微分(Proportional Integral Derivative,PID)控制系统进行对比。结果表明,与车-座椅被动系统相比,采用MFAC方法的车-座椅系统的车身垂直加速度与座椅垂直加速度均方根值在低中高车速下都显著减小;与PID控制相比,车身垂直加速度、座椅垂直加速度、悬架动行程和轮胎动载荷均方根值在低、中、高车速下都有所降低。
文摘为提高提高多机电力系统的暂态稳定性,该文首先建立了静止无功补偿器(static var compensator,SVC)系统的一个含有时变参数不确定性的二阶非线性动态模型,然后在SVC动态模型的基础上,利用自适应控制技术和鲁棒控制技术设计了SVC系统的控制器。为了验证所设计的控制器的有效性,以一个经典的三机九母线电力系统作为测试系统,对鲁棒自适应SVC控制器与PID SVC控制器和反馈线性化SVC控制器分别进行了比较研究。仿真结果表明,与PID SVC控制器和反馈线性化SVC控制器相比,所提出的鲁棒自适应SVC控制器具有良好的性能。