期刊文献+
共找到2,754篇文章
< 1 2 138 >
每页显示 20 50 100
基于粒子群-变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究 被引量:17
1
作者 姜宇航 王伟 +3 位作者 邹丽芳 王如宾 刘世藩 段雪雷 《岩土力学》 EI CAS CSCD 北大核心 2022年第S01期601-612,共12页
以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将... 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。 展开更多
关键词 滑坡位移预测 粒子群算法 变分模态分解 格兰杰因果检验 非线性自回归神经网络 门控循环单元
在线阅读 下载PDF
基于优化非线性自回归神经网络模型的水质预测 被引量:12
2
作者 唐亦舜 徐庆 +1 位作者 刘振鸿 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第3期93-100,共8页
针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(... 针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(DO)质量浓度和浊度3项水质指标的变化趋势。结果表明:优化后的NAR神经网络模型具有较好的非线性处理能力;当输入数据量为180,pH、DO质量浓度和浊度的神经网络模型的延迟阶数分别为2、3、9,隐含层神经元数为10时,NAR神经网络模型对pH、DO质量浓度和浊度的预测均方根误差分别为0.053、0.382 mg/L和17.300 NTU,平均绝对百分比误差分别为0.53%、3.97%和18.01%,预测效果较好。 展开更多
关键词 水质预测 非线性自回归神经网络 PH 溶解氧 浊度 模型优化
在线阅读 下载PDF
基于非线性自回归神经网络的线路故障率预测
3
作者 郑成源 张梁 +4 位作者 赵振刚 李波 廖耀华 陈叶 李博 《陕西理工大学学报(自然科学版)》 2022年第6期22-27,37,共7页
针对低压配电线路的安全运行问题,为保证电能的稳定供应和社会生产活动的正常运转,对线路的故障发生概率进行了预测,可为增强输配电线路的安全运行提供理论依据。首先分析了云南省某地区的低压配电线路运行数据,针对电压异常(失压、断... 针对低压配电线路的安全运行问题,为保证电能的稳定供应和社会生产活动的正常运转,对线路的故障发生概率进行了预测,可为增强输配电线路的安全运行提供理论依据。首先分析了云南省某地区的低压配电线路运行数据,针对电压异常(失压、断相、电压过高、电压偏差异常、三相电压不平衡)、功率异常、功率因素异常等故障类型进行研究;其次对故障发生概率随时间变化的序列平稳性进行分析,绘制相应的自相关和偏自相关函数,确定自回归滑动平均模型的最优阶数,并建立ARMA预测模型;然后根据确立的预测模型输入延迟阶数,建立了非线性自回归神经网络预测模型,通过建立的模型预测了后168个时间点的线路故障发生概率。 展开更多
关键词 低压配电线路 故障发生概率 非线性自回归神经网络
在线阅读 下载PDF
基于非线性自回归神经网络的GHI预测 被引量:12
4
作者 马燕峰 蒋云涛 +1 位作者 郝毅 赵书强 《太阳能学报》 EI CAS CSCD 北大核心 2019年第3期733-740,共8页
针对水平面总辐照度(global horizontal irradiation,GHI)短期预测问题,提出一种基于非线性自回归神经网络的短期水平面太阳总辐照度预测模型。首先,提出一种并联结构训练样本,以保证训练样本内部的时间耦合性。其次,通过对9项气象参数... 针对水平面总辐照度(global horizontal irradiation,GHI)短期预测问题,提出一种基于非线性自回归神经网络的短期水平面太阳总辐照度预测模型。首先,提出一种并联结构训练样本,以保证训练样本内部的时间耦合性。其次,通过对9项气象参数共511种组合作为输入的模型预测精度进行分析,确定模型最优输入组合。最后,利用4种典型气象条件下GHI时延神经网络预测模型,非线性自回归动态神经网络预测模型预测标准均方根误差均降低。 展开更多
关键词 太阳辐照度 预测 神经网络 动态 非线性自回归 训练样本结构
在线阅读 下载PDF
微型位移传感器固有非线性神经网络校正研究
5
作者 华洪良 丁心一 +2 位作者 张静 吴小锋 廖振强 《兵器装备工程学报》 北大核心 2025年第1期175-181,共7页
微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器... 微型碳膜位移传感器具有结构紧凑、可靠、低成本等诸多优点,在农业机械、机器人末端执行器、医疗手术器械等领域具有广阔的应用前景。由于碳膜厚度制造误差,导致微型碳膜位移传感器存在固有非线性,影响其测量精度。针对微型位移传感器固有非线性校正问题,采用神经网络方法,构建非线性校正模型,对传感器固有非线性进行校正。通过仿真与实验相结合的方法,从校正精度、实时解算速度2个维度,将神经网络非线性校正模型和现有PCM、BCM模型进行对比研究。研究结果表明,增加模型阶数,可以有效提高校正精度。对于BCM和神经网络非线性校正模型而言,三阶模型即可实现精度收敛。经过三阶PCM、BCM和神经网络非线性模型校正,传感器测量误差可分别降低46.1%、89.0%和89.6%。因此,神经网络非线性校正模型具有更高的校正精度。此时,PCM、BCM和神经网络非线性校正模型实时解算时间分别为0.48、0.49、0.85 ms,能够基本满足5 ms级高性能控制器应用需求。 展开更多
关键词 位移传感器 非线性校正模型 神经网络方法 测量精度 实时解算
在线阅读 下载PDF
基于多元线性回归和反向传播人工神经网络预测离子液体的声速
6
作者 季常征 万仁 +2 位作者 时兆翀 彭昌军 刘洪来 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期158-165,共8页
离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体... 离子液体的声速可采用实验测定、半经验模型和理论研究方法获得,其中,定量结构-性质关系(QSPR)模型已受到广泛关注,但构造一个有效的QSPR模型取决于选择合适的分子描述符。本文采用片段活度系数类导体屏蔽模型(COSMO-SAC)获得离子液体电荷密度分布片段面积(Sσ)和空穴体积(VCOSMO)两个描述符,并分别采用多元线性回归(MLR)和反向传播人工神经网络(BP-ANN)构建了用于描述离子液体声速的线性QSPR模型u-MLR和非线性QSPR模型u-ANN,模型中包含了温度和离子液体相对分子量,所涉及的数据集包括171种离子液体的5 114个数据点。在总的离子液体声速数据集中,u-MLR和u-ANN的决定系数(R2)分别为0.970 6和0.999 5,平均绝对相对偏差(AARD)分别为1.59%和0.10%,均方根误差(RMSE)分别为30.68 m/s和4.12 m/s。结果表明,基于人工神经网络建立的u-ANN模型的预测效果明显优于基于线性回归方法建立的u-MLR模型的预测效果。 展开更多
关键词 声速 离子液体 人工神经网络 多元线性回归 定量结构-性质关系
在线阅读 下载PDF
基于物理信息神经网络的多介质非线性瞬态热传导问题研究
7
作者 陈豪龙 唐欣越 +2 位作者 王润华 周焕林 柳占立 《力学学报》 北大核心 2025年第1期89-102,共14页
文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利... 文章基于物理信息神经网络(physics-informed neural network,PINN)求解多介质非线性瞬态热传导问题.根据多介质热物性参数的不同,将求解区域划分成多个子域,在每个子域中单独应用PINN,不同子域通过公共界面的通量连续性条件相联系.利用偏微分方程、初始条件、边界条件和子域间公共界面连续性条件的残差构建损失函数.通过自动微分算法计算偏微分方程中温度对各输入变量的偏导数.利用链式求导法计算损失函数对权重和偏差的梯度,再根据梯度下降法更新网络参数.为了加速网络收敛,在激活函数中引入训练参数,通过调节激活函数斜率,使网络具有自适应性.文章探讨了PINN在求解多介质非线性瞬态热传导问题中的适用性,并进一步讨论了不同激活函数、学习率、网络结构和损失函数中的各项权重等对PINN计算结果的影响.计算结果表明,PINN在求解多介质非线性瞬态热传导问题时仍具有较高的可靠性和较简洁的求解流程,且不需要对求解域进行人为的前处理,有一定工程应用可行性.文章通过系统的理论分析和数值验证,充分展示了PINN解决复杂热传导问题的可靠性. 展开更多
关键词 物理信息神经网络 非线性瞬态热传导问题 多介质 自适应激活函数
在线阅读 下载PDF
基于高斯过程回归和BP神经网络的油储地罐容积表标定研究
8
作者 王彩玲 程叶 +1 位作者 许欣黎 倪庆旭 《石油石化节能与计量》 2025年第2期26-30,35,共6页
石油作为中国重要的能源资源之一,广泛应用于发电、运输、工业生产等各个领域。准确的油储地罐容积表标定对于确保各类石油产品储存、运输和交易的精确计量至关重要。传统的标定方法通常高度依赖于静态测量和经验公式,易受时间、环境条... 石油作为中国重要的能源资源之一,广泛应用于发电、运输、工业生产等各个领域。准确的油储地罐容积表标定对于确保各类石油产品储存、运输和交易的精确计量至关重要。传统的标定方法通常高度依赖于静态测量和经验公式,易受时间、环境条件及人为因素的影响。为了解决这一问题,提出了一种基于高斯过程回归(GPR)和反向传播神经网络(BPNN)的标定验证方法。在真实加油站数据构建的数据集上进行实验,结果显示,高斯过程回归模型和BP神经网络模型的平均均方根误差RMSE分别为3.435、8.409,模型的预测效果相对较好,研究结果可为容积表的标定工作提供有价值的参考。 展开更多
关键词 容积表标定 BP神经网络 高斯过程回归 数据挖掘 误差预测
在线阅读 下载PDF
基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿 被引量:2
9
作者 刘鑫屏 陈艺文 董子健 《动力工程学报》 CAS CSCD 北大核心 2024年第5期792-801,共10页
针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制... 针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制系统执行机构的非线性特性模型;为解决传统RBF神经网络辨识性能差的问题,使用遗传算法(GA)对神经网络的中心向量和方差进行优化,利用SVSKLMS算法对RBF神经网络模型中的权重进行优化,进而得到最佳的RBF神经网络。基于VHRBF神经网络及其逆模型补偿器对执行机构非线性特性进行在线辨识及补偿。仿真结果表明:与其他算法训练下的RBF神经网络相比,所提出的VHRBF神经网络能够精确辨识并补偿执行机构的非线性特性,并且具有更快的收敛速度、更优的收敛性能。 展开更多
关键词 RBF神经网络 在线辨识与补偿 执行机构 非线性特性
在线阅读 下载PDF
基于BP神经网络的非线性流域UUV动态回收过程预测 被引量:1
10
作者 杜晓旭 李瀚宇 刘鑫 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第2期189-196,共8页
针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经... 针对水下无人自主航行器(UUV)回收过程中流域存在非线性干扰问题,提出了一种基于BP神经网络优化UUV回收路径的闭环控制方法。采用计算流体力学(CFD)方法模拟UUV相对于潜艇以不同路径进行回收的水动力系数,将数值模拟结果作为训练BP神经网络的初始数据,利用拉丁超立方法对非线性流域的位置随机采样,采用神经网络输出UUV在采样处的水动力系数,实现非线性流域内UUV动态回收过程的水动力系数预测。结果表明:通过均方根检验神经网络预测水动力系数误差均在10%范围内。将神经网络预测结果与UUV纵向操纵性方程结合,对比回收速度和操舵间隔与理论回收轨迹的误差,优化UUV动态回收路径的闭环控制方案。 展开更多
关键词 神经网络 非线性流域 水动力系数 UUV动态回收
在线阅读 下载PDF
基于知识图谱和图卷积神经网络的代码回归测试方法
11
作者 李玉龙 《舰船电子对抗》 2025年第1期59-64,100,共7页
回归测试确保了软件更新后,原有功能正常运行,新增功能的可靠性得到验证。分析代码修改部分并有针对性地选择测试用例可提升测试效率。将知识图谱与图卷积神经网络融入回归测试的过程中,提出基于知识图谱和图卷积神经网络的代码回归测... 回归测试确保了软件更新后,原有功能正常运行,新增功能的可靠性得到验证。分析代码修改部分并有针对性地选择测试用例可提升测试效率。将知识图谱与图卷积神经网络融入回归测试的过程中,提出基于知识图谱和图卷积神经网络的代码回归测试方法。通过对代码信息的提取与构建多层次代码信息知识图谱,使得变更相关信息可以高效获取和可视化表达。通过知识图谱构建测试用例邻接矩阵,并结合图卷积神经网络模型进行训练与定位,实现了对代码缺陷的准确定位,相较传统方法具有更强的泛用性和准确性。 展开更多
关键词 回归测试 知识图谱 图卷积神经网络
在线阅读 下载PDF
课程-迁移学习物理信息神经网络用于长时间非线性波传播模拟 被引量:4
12
作者 郭远 傅卓佳 +2 位作者 闵建 刘肖廷 赵海涛 《力学学报》 EI CAS CSCD 北大核心 2024年第3期763-773,共11页
由于传统物理信息神经网络(PINN)在长时间模拟时存在计算稳定性差甚至无法获得有效解的难题,文章提出了一种基于课程学习和迁移学习的物理信息神经网络(CTL-PINN),用于长时间非线性波传播模拟.该改进的PINN的主要思想是将原长时间历程... 由于传统物理信息神经网络(PINN)在长时间模拟时存在计算稳定性差甚至无法获得有效解的难题,文章提出了一种基于课程学习和迁移学习的物理信息神经网络(CTL-PINN),用于长时间非线性波传播模拟.该改进的PINN的主要思想是将原长时间历程问题转化成若干个短时间子问题,其求解过程分为3个阶段;在初始阶段,使用传统PINN来获得初始短期子问题的解;在课程学习阶段,使用包含前一步训练信息的传统PINN以时域扩大的方式逐次求解,在迁移学习阶段,使用包含前一步训练信息的传统PINN以时域迁移的方式逐次求解.这种改进的PINN可以避免传统PINN陷入局部最优解的问题.最后通过几个基准算例验证了本文所提出的CTL-PINN方法在模拟长时间非线性波传播过程的有效性和鲁棒性. 展开更多
关键词 课程学习 迁移学习 物理信息神经网络 波传播分析 长时间模拟 非线性
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断
13
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 BP神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于人工神经网络及非线性回归的岩爆判据 被引量:15
14
作者 张光存 高谦 +1 位作者 杜聚强 李铿铿 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期2977-2981,共5页
采用人工神经网络和非线性回归方法研究岩爆判据研究。首先利用人工神经网络对原始样本进行量化,然后对量化后的样本数据进行非线性回归分析,获得新的岩爆判据公式。研究结果表明:此岩爆判据公式具有较高的预测精度。
关键词 岩爆判据 人工神经网络 岩爆强度衡量值 非线性回归
在线阅读 下载PDF
基于频域控制约束的物理神经网络非线性系统预测方法
15
作者 钱夔 宋爱国 田磊 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期227-234,共8页
针对现有物理信息神经网络利用数值模拟近似物理控制方程带来的高计算代价、边界条件限制等问题,提出一种基于频域控制约束的物理神经网络非线性系统预测方法。首先构建时序特征交替更新的非线性预测网络模型,再在频域建立基于傅里叶谱... 针对现有物理信息神经网络利用数值模拟近似物理控制方程带来的高计算代价、边界条件限制等问题,提出一种基于频域控制约束的物理神经网络非线性系统预测方法。首先构建时序特征交替更新的非线性预测网络模型,再在频域建立基于傅里叶谱方法(FSM)的物理控制方程约束,时空数据在网络模型与频域控制约束耦合下实现无标签数据加速训练,完成系统演化学习。最后在Burgers系统上进行湍流预测验证,实验结果表明该方法可在物理规则约束下实现无标签非线性复杂建模,对比主流PINN模型及其变体,具有更快的学习速度与预测准确率。在t≤0.25 s、t≤0.5 s短时预测情况下,经前期20次训练后系统预测均方误差(MSE)相比主流基准模型同期预测,MSE降低了86%与95%,在t≤2 s长时预测情况下,经充分训练后系统预测MSE能降低80%。 展开更多
关键词 物理信息神经网络 傅里叶谱方法 频域控制方程约束 Burgers系统 非线性系统预测
在线阅读 下载PDF
输入饱和约束下自适应RBF神经网络非线性反馈船舶航向控制
16
作者 苏文学 孟祥飞 张强 《上海海事大学学报》 北大核心 2024年第2期14-19,共6页
针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最... 针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最小学习参数法减少计算量;将一个具有误差增益反相关特征的非线性函数嵌入控制律中,设计一种非线性反馈控制方法;利用李雅普诺夫理论证明所有信号在考虑外界扰动和模型不确定的船舶航向跟踪控制系统中都是一致有界的。通过仿真和比较,验证了所设计控制方法的有效性。所做研究可为输入饱和约束下船舶航向跟踪控制提供参考,具有工程实际意义。 展开更多
关键词 船舶航向跟踪 径向基函数(RBF)神经网络 非线性反馈控制 输入饱和
在线阅读 下载PDF
基于线性回归及BP神经网络的RAT最大释放冲击载荷预测研究
17
作者 洪烨 王帮亭 +3 位作者 王志伟 杨溢炜 马莹 郦江 《航空计算技术》 2024年第5期53-57,共5页
冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素... 冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素与飞行高度和飞行空速有直接关系,采用线性回归及BP神经网络研究飞行高度和空速对RAT最大释放载荷的影响,并从平均绝对误差及均方根百分误差进行评价。研究将试验及仿真结果作为训练样本,训练完成后将已知输入层参数输入后预测RAT最大释放载荷。对比预测最大释放载荷与试验结果,线性回归预测值平均绝对误差及均方根百分误差小于10%,BP神经网络预测值平均绝对误差及均方根百分误差的平均值小于5%。 展开更多
关键词 冲压空气涡轮 BP神经网络 线性回归 释放冲击载荷
在线阅读 下载PDF
一种基于回归神经网络的码本激励非线性预测话音编码算法 被引量:3
18
作者 马霓 韦岗 《通信学报》 EI CSCD 北大核心 2000年第10期31-37,共7页
为改善预测类声码器中长时预测器特性 ,本文引入了一种全连接回归神经网络 (FRNN)非线性预测器并将其应用于话音编码算法中。FRNN在隐层单元不仅有来自自身的反馈 ,也有来自输出单元的反馈 ,因此其预测性能好于常规预测器。将其应用于... 为改善预测类声码器中长时预测器特性 ,本文引入了一种全连接回归神经网络 (FRNN)非线性预测器并将其应用于话音编码算法中。FRNN在隐层单元不仅有来自自身的反馈 ,也有来自输出单元的反馈 ,因此其预测性能好于常规预测器。将其应用于码本激励话音编码系统 (CELP)中 ,可得到较低的传输码率 ,同时亦可改善编码质量。 展开更多
关键词 非线性预测 回归神经网络 话音编码 码本激励
在线阅读 下载PDF
基于遗传神经网络的漏磁非线性回归分析 被引量:1
19
作者 王群京 鲍晓华 +1 位作者 钱吉吉 倪有源 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第9期1053-1056,共4页
文章针对人工神经网络易陷入局部极小、收敛速度慢的缺点,而遗传算法具有全局寻优的特点,将二者结合起来形成一种遗传神经网络的混合算法;通过实例分析和统计学检验,表明该算法可以运用于爪极发电机漏磁非线性回归分析中,并且遗传神经... 文章针对人工神经网络易陷入局部极小、收敛速度慢的缺点,而遗传算法具有全局寻优的特点,将二者结合起来形成一种遗传神经网络的混合算法;通过实例分析和统计学检验,表明该算法可以运用于爪极发电机漏磁非线性回归分析中,并且遗传神经网络非线性回归是准确和高效的。 展开更多
关键词 人工神经网络 遗传算法 非线性回归 爪极发电机
在线阅读 下载PDF
基于回归神经网络的非线性动态数据校核及其应用 被引量:1
20
作者 刘伯高 黄道 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第5期487-491,506,共6页
研究了简化型内回归神经网络基于自适应梯度下降法的训练算法 ,并提出了一种基于简化型内回归神经网络的非线性动态数据校核新方法。结果表明所提出的方法能够有效地对非线性动态过程进行数据校核 ,并具有良好性能 ;与传统的动态数据校... 研究了简化型内回归神经网络基于自适应梯度下降法的训练算法 ,并提出了一种基于简化型内回归神经网络的非线性动态数据校核新方法。结果表明所提出的方法能够有效地对非线性动态过程进行数据校核 ,并具有良好性能 ;与传统的动态数据校核方法相比 ,所提出方法具有不需要掌握过程本身的精确模型 ,避免了过程模型误差可能带来的估计误差 ,不需事先知道测量噪声和过程噪声的统计特性等特点。 展开更多
关键词 非线性 回归分析 神经网络 釜式反应器
在线阅读 下载PDF
上一页 1 2 138 下一页 到第
使用帮助 返回顶部