期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SSA-BiLSTM非线性组合方法的光伏功率预测 被引量:6
1
作者 袁建华 蒋文军 +2 位作者 李洪强 徐杰 高延玲 《电子测量技术》 北大核心 2023年第21期63-71,共9页
采用多种模型进行线性组合来对光伏功率预测,能有效避免收敛性差、可靠性低等缺点。线性组合模型中,将单一模型之间简为线性关系能简化组合模型计算,但会使预测精度降低。针对此问题,提出一种基于麻雀搜索算法(SSA)优化双向长短期记忆网... 采用多种模型进行线性组合来对光伏功率预测,能有效避免收敛性差、可靠性低等缺点。线性组合模型中,将单一模型之间简为线性关系能简化组合模型计算,但会使预测精度降低。针对此问题,提出一种基于麻雀搜索算法(SSA)优化双向长短期记忆网络(BiLSTM)非线性组合方法的预测模型。首先,利用基于核改进的模糊C均值聚类算法(KFCM)和变分模态分解(VMD)对原始数据样本进行预处理;然后,采用Elman和SSA-BiLSTM对经过预处理后的光伏功率进行建模预测;最后,通过麻雀搜索算法优化双向长短期记忆网络对两个单一模型进行非线性组合,建立短期光伏功率非线性组合模型。通过某个光伏电站实测数据建立对比算例,结果表明所提组合模型在不同天气下的RMSE和MAE平均值分别为0.689 kW和0.540 kW,均优于其他对比模型,验证了所提组合模型的有效性和优越性。 展开更多
关键词 光伏功率预测 非线性组合方法 麻雀搜索算法 BiLSTM网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部