期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非线性粘弹性梁的动力学行为 被引量:20
1
作者 陈立群 程昌钧 《应用数学和力学》 EI CSCD 北大核心 2000年第9期897-902,共6页
建立了描述受周期荷载作用的均匀粘弹性梁动力学行为的非线性偏微分_积分方程 ,梁的材料满足Leaderman非线性本构关系 ,对于两端简支的情形用Galerkin方法进行了 2阶截断后 ,简化为常微分_积分方程 ,进一步简化为便于进行数值实验的常... 建立了描述受周期荷载作用的均匀粘弹性梁动力学行为的非线性偏微分_积分方程 ,梁的材料满足Leaderman非线性本构关系 ,对于两端简支的情形用Galerkin方法进行了 2阶截断后 ,简化为常微分_积分方程 ,进一步简化为便于进行数值实验的常微分方程 ,最后用数值方法比较了 1阶和 2阶截断系统的动力学行为· 展开更多
关键词 运动微分方程 动力学行为 非线性粘弹性梁
在线阅读 下载PDF
非线性粘弹性梁——柱的动力学模型及其简化
2
作者 包忠有 喻晓今 邱小林 《华东交通大学学报》 2003年第1期42-44,共3页
对材料满足Leaderman非线性本构关系、且两端简支的梁—柱的动学模型运用Calerkin方法进行截数据简化变为常微分—积分 。
关键词 非线性粘弹性梁-柱 本构关系 动力学模型 运动微分方程 Leaderman关系 GALERKIN方法
在线阅读 下载PDF
Solving Nonlinear Differential Equation Governing on the Rigid Beams on Viscoelastic Foundation by AGM 被引量:1
3
作者 M. R. Akbari D. D. Ganji +1 位作者 A. K. Rostami M. Nimafar 《Journal of Marine Science and Application》 CSCD 2015年第1期30-38,共9页
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ... In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences. 展开更多
关键词 nonlinear differential equation Akbari-Ganji's method(AGM) rigid beam viscoelastic foundation vibrating system damping ratio energy lost per cycle
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部