In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ...In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.展开更多
基金Supported by the National Natural Science Foundation of China(10971203,11101381)the Natural Science Foundation of Henan Province(112300410026)the Natural Science Foundation of the Education Department of Henan Province(12A110021,2011A110020)
基金国家自然科学基金(12071413,11971487)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie(823731CONMECH)+5 种基金长沙理工大学数学模型与分析重点实验室项目(2018MMAEZD05)湖南省教育厅科学研究项目(18A325)广西自科基金(2018GXNSFDA138002)湖南自科基金(2021JJ30297,2020JJ2038)湖南理工学院科研创新团队项目(2019-TD-15)海南省计算与应用重点实验室开放基金(JSKX201905)。
文摘In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences.