期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非线性粘弹性方程的EQ_1^(rot)非协调有限元分析(英文) 被引量:2
1
作者 王芬玲 赵艳敏 石东洋 《应用数学》 CSCD 北大核心 2013年第1期1-10,共10页
针对非线性粘弹性方程,在半离散和全离散格式下给出EQ1rot非协调有限元逼近.由于该单元的相容误差 (O(h2)阶)比插值误差 (O(h)阶)高一阶,可得到在H1模意义下的O(h2)阶超逼近结果,并利用插值后处理技术导出整体超收敛.进而,基于该单元的... 针对非线性粘弹性方程,在半离散和全离散格式下给出EQ1rot非协调有限元逼近.由于该单元的相容误差 (O(h2)阶)比插值误差 (O(h)阶)高一阶,可得到在H1模意义下的O(h2)阶超逼近结果,并利用插值后处理技术导出整体超收敛.进而,基于该单元的渐近展开式,构造新的插值后处理算子和外推格式,给出O(h4)阶的外推结果.最后,运用与以往文献不同的方法得到全离散逼近格式的最优误差估计. 展开更多
关键词 非线性粘弹性方程 EQ1rot非协调有限元 超逼近和超收敛 外推 半离散和全离散格式
在线阅读 下载PDF
具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性 被引量:1
2
作者 张再云 刘振海 邓又军 《数学物理学报(A辑)》 CSCD 北大核心 2021年第6期1684-1704,共21页
研究了一类具有时变时滞效应和速度相关材料密度的非线性粘弹性方程.在适当的松弛函数和时变时滞效应假设下,分别用Faedo-Galerkin方法和摄动能量方法证明了弱解的整体存在性和能量的一般衰减性.这一结果改进了早期文献[1,48-50]中的结果.
关键词 整体存在性 非线性粘弹性方程 一般衰减性 时变时滞 速度相关材料密度 摄动能量法
在线阅读 下载PDF
Solving Nonlinear Differential Equation Governing on the Rigid Beams on Viscoelastic Foundation by AGM 被引量:1
3
作者 M. R. Akbari D. D. Ganji +1 位作者 A. K. Rostami M. Nimafar 《Journal of Marine Science and Application》 CSCD 2015年第1期30-38,共9页
In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by ... In the present paper a vibrational differential equation governing on a rigid beam on viscoelastic foundation has been investigated. The nonlinear differential equation governing on this vibrating system is solved by a simple and innovative approach, which has been called Akbari-Ganji's method (AGM). AGM is a very suitable computational process and is usable for solving various nonlinear differential equations. Moreover, using AGM which solving a set of algebraic equations, complicated nonlinear equations can easily be solved without any mathematical operations. Also, the damping ratio and energy lost per cycle for three cycles have been investigated. Furthermore, comparisons have been made between the obtained results by numerical method (Runk45) and AGM. Results showed the high accuracy of AGM. The results also showed that by increasing the amount of initial amplitude of vibration (A), the value of damping ratio will be increased, and the energy lost per cycle decreases by increasing the number of cycle. It is concluded that AGM is a reliable and precise approach for solving differential equations. On the other hand, it is better to say that AGM is able to solve linear and nonlinear differential equations directly in most of the situations. This means that the final solution can be obtained without any dimensionless procedure Therefore, AGM can be considered as a significant progress in nonlinear sciences. 展开更多
关键词 nonlinear differential equation Akbari-Ganji's method(AGM) rigid beam viscoelastic foundation vibrating system damping ratio energy lost per cycle
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部