期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
1
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子优化算法
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
2
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 极限学习 气动参数辨识 非线性
在线阅读 下载PDF
基于粒子群优化的核极限学习机模型的风电功率区间预测方法 被引量:145
3
作者 杨锡运 关文渊 +1 位作者 刘玉奇 肖运启 《中国电机工程学报》 EI CSCD 北大核心 2015年第S1期146-153,共8页
风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极... 风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极限学习机(PSO-KELM)模型,用于风电功率区间预测。通过核极限学习机(KELM)建立预测模型,采用粒子群算法对KELM的输出权值进行优化,寻找最优预测区间上下限,充分利用了KELM学习速度快、泛化能力强的优点,实现了对风电功率的快速区间预测。通过与PSO-ELM模型对比分析风电场在不同置信水平下的概率预测结果,发现PSO-KELM模型的预测精度更高,速度更快,能够为风电功率区间预测及风电并网安全稳定运行提供决策支持。 展开更多
关键词 风电功率 区间预测 极限学习 粒子
在线阅读 下载PDF
粒子群优化核极限学习机的变压器故障诊断 被引量:16
4
作者 裴飞 陈雪振 +1 位作者 朱永利 遇炳杰 《计算机工程与设计》 北大核心 2015年第5期1327-1331,共5页
核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimiz... 核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimization,PSO)的KELM分类器参数优化方法,将CV训练所得多个模型的平均准确率作为PSO的适应度评价函数,为KELM的参数优化提供评价标准。将该方法应用于变压器故障诊断中,充分利用数量有限的样本数据,提高KELM的泛化性能。实验结果表明,相比结合网格搜索(grid)的KELM、结合CV和Grid的KELM以及结合PSO的KELM,结合PSO的CV参数优化方法具有更好的性能。 展开更多
关键词 极限学习 粒子优化 交叉验证 变压器故障诊断 参数优化
在线阅读 下载PDF
基于探测粒子群的小波核极限学习机算法 被引量:2
5
作者 陈晓青 陆慧娟 +1 位作者 关伟 郑文斌 《计算机科学》 CSCD 北大核心 2016年第S1期77-80,共4页
在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKEL... 在分析核极限学习机原理的基础上,将小波函数作为核函数运用于极限学习机中,形成小波核极限学习机(WKELM)。实验表明,该算法提高了分类性能,增加了鲁棒性。在此基础上利用探测粒子群(Detecting Particle Swarm Optimization,DPSO)对WKELM参数优化,最终得到分类效果较优的DPSO-WKELM分类器。通过采用UCI基因数据进行仿真,将该分类结果与径向基核极限学习机(KELM)、WKELM等算法结果进行比较,得出所提算法具有较高的分类精度。 展开更多
关键词 极限学习 探测粒子 算法优化 分类精度
在线阅读 下载PDF
基于粒子群算法和核极限学习机的财务危机预测模型 被引量:15
6
作者 张亚男 刘人境 陈慧灵 《统计与决策》 CSSCI 北大核心 2019年第9期67-71,共5页
文章提出了一种基于粒子群优化算法与核极限学习机的企业财务危机预测方法。考虑到在分类预测的过程中参数优化与特征选择之间的相互影响,利用粒子群优化算法优化核极限学习机参数的同时进行特征选择,从而优化出最优的核极限学习机模型... 文章提出了一种基于粒子群优化算法与核极限学习机的企业财务危机预测方法。考虑到在分类预测的过程中参数优化与特征选择之间的相互影响,利用粒子群优化算法优化核极限学习机参数的同时进行特征选择,从而优化出最优的核极限学习机模型并得到具有代表性的特征子集;最后,使用所提出的最优的核极限学习机模型对新数据集进行训练和预测。实验表明,与其他预测模型进行对比实验,该方法具有更好的性能,方法可行有效且实用。 展开更多
关键词 极限学习 粒子算法 特征选择 财务危预测
在线阅读 下载PDF
粒子群优化混合核极限学习机的构造煤厚度预测方法 被引量:17
7
作者 范君 王新 徐慧 《计算机应用》 CSCD 北大核心 2018年第6期1820-1825,1830,共7页
在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关... 在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关性。然后,构建全局多项式核函数和局部高斯径向基核函数混合核极限学习机(HKELM)模型,并利用PSO算法优化HKELM的核参数。同时,针对PSO算法存在容易陷入局部最优的问题,在PSO算法中加入模拟退火的思想和随迭代次数减小的惯性权重,以及基于反向学习的变异操作,使PSO算法可以更容易跳出局部极小值点,得到更优结果。此外,为了增强模型的泛化能力,在核函数的基础上加入L2正则项,有效地避免了噪声和异常点对模型泛化性能的影响。最后,将预测模型应用到阳煤集团新景矿区芦南二采区中部15#煤层中,预测得到的采区构造煤厚度与实际地质资料具有较高的一致性。实验结果表明,利用改进PSO算法优化HKELM构建构造煤厚度预测模型的预测误差较小,可以推广用于实际采区的构造煤厚度预测。 展开更多
关键词 主成分分析 粒子优化 函数 极限学习 构造煤 厚度预测
在线阅读 下载PDF
基于粒子群优化核极限学习机的北斗超快速钟差预报 被引量:18
8
作者 李文涛 边少锋 +2 位作者 任青阳 梅长松 潘雄 《宇航学报》 EI CAS CSCD 北大核心 2019年第9期1080-1088,共9页
针对卫星钟差序列中非线性特性较为复杂和超快速钟差预报精度较低的问题,将核极限学习机算法引入到北斗超快速钟差预报中。首先,将极限学习机进行优化,引入粒子群优化算法来选择核极限学习机所需的核参数和正则化参数;然后,将优化后的... 针对卫星钟差序列中非线性特性较为复杂和超快速钟差预报精度较低的问题,将核极限学习机算法引入到北斗超快速钟差预报中。首先,将极限学习机进行优化,引入粒子群优化算法来选择核极限学习机所需的核参数和正则化参数;然后,将优化后的方法应用到超快速钟差预报中,并给出了利用该方法进行超快速钟差预报的步骤;最后,在分析iGMAS提供的实测北斗超快速钟差数据的基础上,选用单天和多天数据进行短期预报。结果表明:在短期预报6h范围内,利用本文提供的优化方法解算得到的超快速钟差预报精度明显优于二次多项式模型和周期项模型,并且采用此方法得到的超快速钟差预报产品与iGMAS提供的超快速钟差预报产品(ISU-P)相比,GEO、IGSO和MEO卫星的预报精度分别提升了50. 51%、46. 98%、40. 67%,其与最终精密钟差的符合程度显著增强。 展开更多
关键词 iGMAS 北斗超快速钟差预报 极限学习 粒子优化 最终精密钟差
在线阅读 下载PDF
基于K-均值聚类与粒子群核极限学习机的推力估计器设计 被引量:7
9
作者 赵姝帆 李本威 +2 位作者 宋汉强 逄珊 朱飞翔 《推进技术》 EI CAS CSCD 北大核心 2019年第2期259-266,共8页
鉴于航空发动机直接推力控制与健康管理需要高精度及高实时性的推力估计器,提出了一种基于K-均值聚类与粒子群优化的核极限学习机推力估计方法。采用K-均值聚类对全工况范围内的测量数据进行聚类,在每一个子类中,通过核极限学习机建立... 鉴于航空发动机直接推力控制与健康管理需要高精度及高实时性的推力估计器,提出了一种基于K-均值聚类与粒子群优化的核极限学习机推力估计方法。采用K-均值聚类对全工况范围内的测量数据进行聚类,在每一个子类中,通过核极限学习机建立推力估计器,采用粒子群算法对核极限学习机的核参数和惩罚系数进行优化,利用了核极限学习机稳定性好、非线性拟合能力强的特点,实现了对发动机推力的估计。经涡扇发动机台架试车数据训练与测试表明,本推力估计方法平均预测时间为0.27ms,实时性满足机载在线状态评估和直接推力控制需求,且在估计精度上较现有方法存在一定优势。 展开更多
关键词 航空发动 推力估计器 K-均值聚类 粒子极限学习 直接推力控制
在线阅读 下载PDF
基于在线滚动序列核极限学习机的涡轴发动机非线性模型预测控制 被引量:2
10
作者 王宁 潘慕绚 黄金泉 《航空发动机》 北大核心 2018年第5期44-50,共7页
针对涡轴发动机控制系统设计,提出了1种基于在线滚动序列核极限学习机的非线性模型预测控制方法。综合考虑直升机旋翼扭矩、燃气涡轮转速、动力涡轮转速、涡轮级间温度和压气机喘振裕度等信息,设计具有较好实时性、精度和泛化能力的多... 针对涡轴发动机控制系统设计,提出了1种基于在线滚动序列核极限学习机的非线性模型预测控制方法。综合考虑直升机旋翼扭矩、燃气涡轮转速、动力涡轮转速、涡轮级间温度和压气机喘振裕度等信息,设计具有较好实时性、精度和泛化能力的多输出在线滚动序列核极限学习机作为预测模型,引入预测模型输出与发动机输出的误差进行反馈校正,利用序列二次规化算法在线求解包含限制约束的预测控制问题。在某型直升机/涡轴发动机综合平台的仿真环境中进行了直升机大幅度机动飞行仿真验证,结果表明:该模型预测控制器相比于传统串级控制具有更好的控制品质,可显著降低动力涡轮转速超调/下垂量。 展开更多
关键词 控制系统 极限学习 在线滚动序列 非线性模型预测控制 涡轴发动
在线阅读 下载PDF
一种自主核优化的二值粒子群优化–多核学习支持向量机变压器故障诊断方法 被引量:25
11
作者 尹玉娟 王媚 +3 位作者 张金江 袁鹏 詹俊鹏 郭创新 《电网技术》 EI CSCD 北大核心 2012年第7期249-254,共6页
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。... 支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。 展开更多
关键词 溶解气体分析 支持向量 学习 二值粒子优化 故障诊断 变压器
在线阅读 下载PDF
自适应混沌粒子群算法对极限学习机参数的优化 被引量:22
12
作者 陈晓青 陆慧娟 +1 位作者 郑文斌 严珂 《计算机应用》 CSCD 北大核心 2016年第11期3123-3126,共4页
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类... 针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 展开更多
关键词 自适应 极限学习 混沌粒子 基因分类
在线阅读 下载PDF
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测 被引量:26
13
作者 殷豪 董朕 孟安波 《计算机应用研究》 CSCD 北大核心 2018年第7期2088-2091,共4页
为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。EL... 为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。 展开更多
关键词 极限学习 混沌纵横交叉 粒子算法 预测精度 短期负荷预测
在线阅读 下载PDF
一种基于粒子群优化的极限学习机 被引量:73
14
作者 王杰 毕浩洋 《郑州大学学报(理学版)》 CAS 北大核心 2013年第1期100-104,共5页
极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(part... 极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(particle swarm optimization,PSO)选择最优的输入权值矩阵和隐含层偏差,从而计算出输出权值矩阵.一维Sinc函数拟合实验表明,相比于ELM算法和传统神经网络算法,粒子群极限学习机算法依靠较少的隐含层节点能够获得较高精度. 展开更多
关键词 粒子 极限学习 隐含层节点
在线阅读 下载PDF
基于聚类与粒子群极限学习机的航空发动机推力估计器设计 被引量:13
15
作者 宋汉强 李本威 +1 位作者 张赟 蒋科艺 《推进技术》 EI CAS CSCD 北大核心 2017年第6期1379-1385,共7页
针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然... 针对航空发动机推力不可测,部件级模型求解推力精度不高、实时性差的问题,提出了基于快速寻找密度极点聚类与粒子群极限学习机的航空发动机推力估计方法。首先利用基于快速寻找密度极点的聚类算法对全工况范围内的台架试车数据聚类,然后在每一个子类中,用粒子群极限学习机设计了子推力估计器。在子类推力估计过程中,为使网络拓扑结构最优,用粒子群算法寻找极限学习机的最优隐层神经元数目的方法。训练与测试表明,推力估计测试相对误差最大值为3.06‰,优于传统的RBF(7.25‰)与BP(14.84‰)神经网络方法,能够满足直接推力控制与机载在线实时状态评估的需求,且可将方法扩展到其他不可测参数的估计。 展开更多
关键词 航空发动 推力估计 快速寻找密度极点聚类 粒子极限学习 直接推力控制
在线阅读 下载PDF
基于改进粒子群优化极限学习机的养殖氨态氮含量预测模型 被引量:10
16
作者 徐大明 杜永贵 +1 位作者 孙传恒 周超 《江苏农业科学》 北大核心 2017年第4期183-186,共4页
针对养殖水体氨态氮含量预测准确性低的问题,提出了一种基于改进粒子群算法优化极限学习机的水产养殖氨态氮含量预测模型。引入自适应变异算子改进粒子群算法的搜索性能,利用改进粒子群算法优化极限学习机的初始权值和阈值,最后训练极... 针对养殖水体氨态氮含量预测准确性低的问题,提出了一种基于改进粒子群算法优化极限学习机的水产养殖氨态氮含量预测模型。引入自适应变异算子改进粒子群算法的搜索性能,利用改进粒子群算法优化极限学习机的初始权值和阈值,最后训练极限学习机预测模型求得最优解。将该预测模型应用在小汤山水产品养殖系统进行有效性验证,通过试验发现,与PSO-ELM和普通BP神经网络相比,IPSO-ELM预测氨态氮含量模型有更高的精度和更好的拟合能力。结果表明,基于改进粒子群优化的极限学习机氨态氮含量预测模型简单易懂、预测精度高、易于实现,具有较好的预测性能。 展开更多
关键词 氨态氮预测 粒子算法 变异算子 极限学习
在线阅读 下载PDF
基于粒子群优化极限学习机的水质评价新模型 被引量:18
17
作者 张颖 李梅 《环境科学与技术》 CAS CSCD 北大核心 2016年第5期135-139,共5页
河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)... 河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)分类算法中随机给定输入权值矩阵和隐含层偏置,需要较多的隐含层节点才能达到所需的精度要求,隐含层节点过多易于出现过拟合现象并增加算法的计算量。该文利用粒子群算法(PSO)优化极限学习机的输入权值矩阵和隐含层偏置,计算输出权值矩阵,以减少隐含层节点。通过对比PSO-ELM、ELM这2种算法发现,PSO-ELM算法以较少的隐含层节点可获得更高的精度,降低了对实验样本的需求量,提高了模型的拟合能力。实验结果表明,PSO-ELM对于水质类别判定具有一定的可行性和有效性。 展开更多
关键词 粒子优化 极限学习 水质评价 权值 隐含层
在线阅读 下载PDF
基于改进粒子群优化算法和极限学习机的混凝土坝变形预测 被引量:34
18
作者 李明军 王均星 王亚洲 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2019年第11期1136-1144,共9页
混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网... 混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网络模型收敛速度慢和过度拟合等问题,提出了一种基于改进型粒子群优化算法选取极限学习机(ELM-IPSO)最优参数的大坝变形预测模型.针对传统粒子群算法搜索时间长、容易陷入局部最优的特点,采用自适应惯性权重和动态调整学习因子,对粒子群算法进行了改进.研究表明,IPSO算法提高了粒子群优化的全局搜索能力,提高了计算效率.应用IPSO优化ELM模型的初始权值和阈值.通过东江混凝土拱坝的实测资料,验证ELM-IPSO模型的预测性能.将计算结果与BPNN模型、ELM模型和传统ELM-PSO模型的结果进行比较.BPNN模型、ELM模型、ELM-PSO模型和ELM-IPSO模型的平方相关系数R2分别为89.15%、91.13%、93.87%和94.36%.ELM模型的R2大于BPNN模型,说明ELM模型比常规的BPNN模型预测精度更高,泛化性能更好.ELM-PSO模型的预测精度大于ELM模型,说明PSO对ELM的优化在提高预测精度方面具有良好的作用.4个模型中,ELM-IPSO模型的R^2最大,预测精度最高,这表明提出的ELM-IPSO模型能够有效提高混凝土坝变形的预测能力. 展开更多
关键词 混凝土大坝变形 极限学习 BP神经网络 改进的粒子优化算法
在线阅读 下载PDF
一种基于量子粒子群优化的极限学习机(英文) 被引量:9
19
作者 逄珊 杨欣毅 林学森 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2447-2458,共12页
极限学习机(ELM)是一种新型的单隐含层神经网络的训练方法,同传统的基于梯度的网络训练方法相比,具有快速的学习速度和更好的泛化性能。ELM在实际应用中往往需要大量的隐含层神经元,由于随机设定输入权值和偏置值,容易导致病态问题的出... 极限学习机(ELM)是一种新型的单隐含层神经网络的训练方法,同传统的基于梯度的网络训练方法相比,具有快速的学习速度和更好的泛化性能。ELM在实际应用中往往需要大量的隐含层神经元,由于随机设定输入权值和偏置值,容易导致病态问题的出现。为解决上述问题,提出一种应用量子粒子群(QPSO)优化包括隐含层节点个数在内的网络参数的方法。这种优化基于验证集的均方根误差,考虑到了输入权值矩阵的范数。在典型的回归和分类问题上进行试验证明了算法的有效性。 展开更多
关键词 极限学习 单隐含层前馈神经网络 量子粒子 泛化能力
在线阅读 下载PDF
基于粒子群与极限学习机的电能质量信号特征选择与识别 被引量:5
20
作者 黄南天 卢国波 +3 位作者 王玉强 赵振峰 李旭 张卫辉 《电工电能新技术》 CSCD 北大核心 2016年第7期55-61,共7页
高效准确地分类电能质量扰动信号是处理电能质量问题的关键。为降低特征计算量,提高分类器分类效率,本文提出一种基于粒子群与极限学习机的电能质量特征选择与识别方法。首先,通过S变换对电能质量扰动信号进行重构与变换,并在此基础上... 高效准确地分类电能质量扰动信号是处理电能质量问题的关键。为降低特征计算量,提高分类器分类效率,本文提出一种基于粒子群与极限学习机的电能质量特征选择与识别方法。首先,通过S变换对电能质量扰动信号进行重构与变换,并在此基础上提取特征;然后,以极限学习机的分类精度和选择特征个数作为适应度函数,通过粒子群算法在高维特征空间中寻优,剔除不相关和冗余的特征,保留对扰动识别有效果的特征,由此,确定最优分类子集;最后,使用最优特征子集构成极限学习机的输入向量,训练分类器,并采用优化后的分类器分类电能质量信号。仿真实验表明,新方法能够将维度为25的原始特征集合缩减到8维,且在不同噪声环境下保持综合分类准确率为99.33%。 展开更多
关键词 电能质量 S变换 粒子算法 极限学习 特征选择
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部