By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x...By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x)=x in Banach spaces. Where A and B can be decomposed A=A1+A2, B=B1+B2,A1 and B1 are mixed monotone, A2 and B2 are anti-mixed monotone. The results presented here improve and generalize some corresponding results of mixed monotone operator equations.展开更多
In this paper, some sufficient and necessary conditions are established for the oscillatory of solutions for nonlinear functional difference equations, which extend and improve some corresponding results obtained and ...In this paper, some sufficient and necessary conditions are established for the oscillatory of solutions for nonlinear functional difference equations, which extend and improve some corresponding results obtained and are discrete analogues of the corresponding results for the continuous version.展开更多
基金Supported by the Scientific Research Foundation of Henan Provincial Education Com mittee(1999110018)
文摘By using the theory of the cone and partial ordering. It is studied that the existence and uniqueness of solutions for a non-monotone binary operator equation A(x, x)= x and operator system of equations A(x,x)=x,B(x,x)=x in Banach spaces. Where A and B can be decomposed A=A1+A2, B=B1+B2,A1 and B1 are mixed monotone, A2 and B2 are anti-mixed monotone. The results presented here improve and generalize some corresponding results of mixed monotone operator equations.
基金Supported by the Nature Science Foundation of Jining(JB10)
文摘In this paper, some sufficient and necessary conditions are established for the oscillatory of solutions for nonlinear functional difference equations, which extend and improve some corresponding results obtained and are discrete analogues of the corresponding results for the continuous version.