Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered befo...Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.展开更多
Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.Howe...Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.展开更多
基金Projects (61304198,61374195) supported by the National Natural Science Foundation of ChinaProjects (2013M530159,2014T70351) supported by the China Postdoctoral Science Foundation
文摘Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.
基金Project(61174002)supported by the National Natural Science Foundation of ChinaProject(200897)supported by the Foundation of National Excellent Doctoral Dissertation of PR China+1 种基金Project(NCET-10-0900)supported by the Program for New Century ExcellentTalents in University,ChinaProject(131061)supported by the Fok Ying Tung Education Foundation,China
文摘Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.