Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclus...Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.展开更多
A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller desig...A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.展开更多
文摘Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.
文摘A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.