期刊文献+
共找到5,128篇文章
< 1 2 250 >
每页显示 20 50 100
基于支持向量回归的三体船非线性横摇运动辨识 被引量:1
1
作者 顾跃 朱仁传 +1 位作者 李传庆 吴铖毓 《中国舰船研究》 北大核心 2025年第2期187-195,共9页
[目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船... [目的]针对三体船横摇的非线性,提出CFD与支持向量回归(SVR)相结合的船体运动辨识建模方法,[方法]基于STAR-CCM+平台,对不同侧体横向位置三体船的强迫横摇运动进行数值模拟,并应用SVR方法对力矩时历曲线进行参数辨识,计算不同频率下船体的附加质量与阻尼系数。[结果]结果表明,三体船阻尼系数呈现出较强的频率相关性;低频时阻尼非线性特征明显,舭龙骨阻尼成分占比较大。[结论]所提方法能够准确捕捉三体船横摇运动的非线性特征,相比于势流理论能够更好地考虑片体间流场的相互作用。 展开更多
关键词 三体船 非线性横摇阻尼 计算流体力学 支持向量回归 回归分析
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测 被引量:1
2
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于改进人工蜂鸟算法优化支持向量机的人脸识别算法
3
作者 肖剑 黄博 +2 位作者 程鸿亮 胡欣 袁晔 《计算机工程》 北大核心 2025年第10期319-326,共8页
传统的人脸识别系统在最终人脸分类问题上,通常借助各种仿生学算法与支持向量机(SVM)相结合组成相应的人脸识别模型。该方法通过算法的迭代选取最优SVM参数,然而这种策略在人脸识别方法上存在分类精度较低、训练时间较长且容易陷入局部... 传统的人脸识别系统在最终人脸分类问题上,通常借助各种仿生学算法与支持向量机(SVM)相结合组成相应的人脸识别模型。该方法通过算法的迭代选取最优SVM参数,然而这种策略在人脸识别方法上存在分类精度较低、训练时间较长且容易陷入局部最优解的问题。针对上述问题,提出利用改进人工蜂鸟算法(AHA)优化SVM的人脸识别算法。首先通过引入Tent映射的混沌序列改进人工蜂鸟算法,使蜂鸟种群初始化更为均匀,避免算法陷入局部最优解;其次在SVM进行人脸识别的方法中引入改进AHA,通过设定一定的迭代次数,选择用来优化SVM的最优相关参数,达到提高人脸识别准确率的目的。实验结果表明,将改进的人工蜂鸟算法与灰狼优化(GWO)算法、麻雀搜索算法(SSA)、鲸鱼优化算法(WOA)进行对比,改进AHA在基准函数的求解上具有更快的收敛速度,同时在ORL人脸数据库进行人脸识别实验,将改进AHA与SVM相结合,相比于将GWO、SSA和WOA与SVM相结合,在人脸识别的准确率指标方面,改进AHA结合SVM方案具有更高的准确率和召回率,并且模型推理速度更快。 展开更多
关键词 人工蜂鸟算法 支持向量 人脸识别 TENT映射 混沌序列
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
4
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘法支持向量 金豺算法
在线阅读 下载PDF
基于麻雀算法优化支持向量机的阀门内漏诊断研究 被引量:2
5
作者 龚家乐 曹丽华 +1 位作者 李大才 司和勇 《汽轮机技术》 北大核心 2025年第2期110-112,126,共4页
由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断... 由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断性能上与标准SVM模型进行对比分析。结果表明:在诊断过程中,SSA-SVM阀门内漏诊断模型能够适时调整模型参数,并保持较高的诊断性能,多个泄漏诊断指标均优于标准模型。当泄漏诊断准确率优先级高于诊断时间时,SSA-SVM诊断模型拥有更好的阀门泄漏诊断能力。 展开更多
关键词 阀门泄漏 支持向量 麻雀优化算法 故障诊断
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型 被引量:1
6
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
非线性回归支持向量机的SMO算法改进 被引量:11
7
作者 赵长春 姜晓爱 金英汉 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第1期125-130,共6页
为了解决非线性数据和非线性函数的回归问题,采用了支持向量机序列最小优化算法.原始序列最小优化(SMO,Sequential Minimal Optimization)算法存在训练速度慢和训练结果不稳定的缺点,为了能加快SMO算法的训练速度和提高训练结果稳定性,... 为了解决非线性数据和非线性函数的回归问题,采用了支持向量机序列最小优化算法.原始序列最小优化(SMO,Sequential Minimal Optimization)算法存在训练速度慢和训练结果不稳定的缺点,为了能加快SMO算法的训练速度和提高训练结果稳定性,通过改进优化乘子更新方法、采用双阈值法、预存核函数、增加停机准则等方法对SMO算法做了改进.仿真实验表明,改进的算法能很好地对非线性数据和非线性函数进行回归,具有比原始SMO算法更快的训练速度和稳定的训练结果. 展开更多
关键词 支持向量 回归 非线性数据 非线性函数 序列最小优化算法
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:4
8
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
9
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构姿态 掘进比能 支持向量回归
在线阅读 下载PDF
改进的混沌人工蜂群算法-支持向量机漏钢预报模型
10
作者 张凯俊 张本国 +1 位作者 马棒棒 张瑞忠 《材料与冶金学报》 北大核心 2025年第3期237-242,共6页
支持向量机(SVM)是连铸漏钢预报的常用方法,针对支持向量机算法参数选取难度较大的问题,提出了一种改进的混沌人工蜂群算法-支持向量机(ICABC-SVM)漏钢预报模型.首先,利用伯努利(Bernoulli)混沌映射初始化蜂群种群,增加种群多样性;其次... 支持向量机(SVM)是连铸漏钢预报的常用方法,针对支持向量机算法参数选取难度较大的问题,提出了一种改进的混沌人工蜂群算法-支持向量机(ICABC-SVM)漏钢预报模型.首先,利用伯努利(Bernoulli)混沌映射初始化蜂群种群,增加种群多样性;其次,引入莱维(Levi)飞行策略,改进蜂群的搜索方式,扩大蜂群的搜索空间;最后,将支持向量机参数作为食物源进行寻优,并结合钢厂的历史生产数据,对ICABC-SVM模型进行训练和测试.结果表明:ICABC算法精度更高,具有良好的自适应能力;ICABC-SVM模型预报准确率为98.57%,报出率为100.00%,兼具实用性与可行性. 展开更多
关键词 漏钢预报 混沌映射 人工蜂群算法 莱维飞行 支持向量
在线阅读 下载PDF
基于群智能算法优化支持向量回归的挤压性围岩隧道变形预测
11
作者 徐剑波 姚天宇 +2 位作者 王力 朱颂阳 罗学东 《地质科技通报》 北大核心 2025年第5期317-326,共10页
隧道工程中,隧道设计和施工安全的前提是准确评估隧道围岩变形量。将萤火虫算法(FA)、鲸鱼优化算法(WOA)和灰狼优化算法(GWO)与优化支持向量回归(SVR)结合起来,并基于此构建了3种混合群智能优化预测模型,以预测挤压性围岩隧道变形量。... 隧道工程中,隧道设计和施工安全的前提是准确评估隧道围岩变形量。将萤火虫算法(FA)、鲸鱼优化算法(WOA)和灰狼优化算法(GWO)与优化支持向量回归(SVR)结合起来,并基于此构建了3种混合群智能优化预测模型,以预测挤压性围岩隧道变形量。构建了一个包含62个样本的数据库,选取了7种隧道及围岩初始参数作为预测模型输入参数,将隧道径向变形量作为输出量。选择决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)模型预测效果的评价指标。最后,使用归一化互信息法评估不同输入参数对隧道围岩变形预测结果的影响。研究结果表明,FA-SVR模型在训练阶段和测试阶段的预测性能优于GWO-SVR模型和WOA-SVR模型,训练集和测试集对应的R^(2)分别为0.9634和0.9648,RMSE分别为18.786和14.699,MAE分别为9.460和11.170,预测能力排序为:FA-SVR>WOA-SVR>GWO-SVR。萤火虫算法、鲸鱼优化算法和灰狼优化算法均能提高支持向量回归模型的预测性能,FA-SVR模型的预测效果最好,经过优化的混合预测模型性能显著优于经典模型。敏感性分析表明,节理密度是影响隧道围岩变形预测值的最重要参数。研究成果可为隧道工程安全控制提供重要参考。 展开更多
关键词 挤压性围岩隧道 变形预测 群智能优化算法 支持向量回归 归一化互信息
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
12
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
13
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
近红外无创血糖浓度的Label Sensitivity算法和支持向量机回归 被引量:3
14
作者 孟琪 赵鹏 +4 位作者 宦克为 李野 姜志侠 张瀚文 周林华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期617-624,共8页
近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在... 近红外光谱分析技术在生物医学工程领域具有广阔应用前景。无创且持续性地测量能实时监控人体血糖水平,给糖尿病患者带来极大便利性、提高生存质量、降低糖尿病并发症发生率具有很大的社会效益。无创血糖监测的想法提出较早,但仍然存在预测精度低、预测值与标签值相关性不高等难点,至今没有达到临床要求。近年来,光谱检测技术发展迅猛且机器学习技术在智能信息处理方面具有明显优势,两者结合可以有效提高人体无创血糖医学监测模型的精度和普适性。提出了一种标签敏感度算法(LS),并结合支持向量机方法建立了人体血糖含量预测模型。使用近红外光谱仪采集了4名志愿者食指处动态血液光谱数据(每名志愿者28组数据),并使用多元散射矫正(MSC)方法消除了部分光散射的影响。考虑血糖对不同波长光的吸收有差异,提出了基于血糖浓度标签差的特征波长挑选方法,并构建了标签敏感度支持向量机(LSSVR)预测模型。设计实验,对比该模型与偏最小二乘回归(PLSR)和区分度支持向量机(FSSVR)算法。结果表明,LS算法的最佳特征波长数为32,经特征波长选择后的LSSVR表现最佳,其均方误差降低至0.02 mmol·L^(-1),明显优于全谱段PLSR模型,血糖浓度的预测值与标签值的相关系数提升至99.8%,预测值全部位于可容许误差的克拉克网格A区内。LSSVR模型的优异表现为早日实现血糖的无创监测提供了新思路。 展开更多
关键词 无创血糖 近红外光谱 特征波长 Label Sensitivity算法 支持向量
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:4
15
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
基于支持向量回归的非线性轮廓异常点识别 被引量:1
16
作者 马铭 孙江 +2 位作者 魏秀峰 杨文伟 聂斌 《机械设计》 CSCD 北大核心 2024年第S02期132-136,共5页
在现代制造业中,非线性轮廓数据的监控已成为质量管理领域中统计过程控制的关键研究方向。然而,现有的非线性轮廓异常点识别方法在处理非正态分布数据时仍存在性能不足的问题,亟需有效的解决方案。因此,文中提出了一种基于支持向量回归... 在现代制造业中,非线性轮廓数据的监控已成为质量管理领域中统计过程控制的关键研究方向。然而,现有的非线性轮廓异常点识别方法在处理非正态分布数据时仍存在性能不足的问题,亟需有效的解决方案。因此,文中提出了一种基于支持向量回归的异常点识别方法,综合运用数据深度与聚类分析等技术,精准识别异常轮廓数据,为提取高质量受控数据提供更可靠的基础。与传统的χ^(2)控制图方法进行仿真对比,发现文中所提出方法在识别异常非线性轮廓数据方面表现更为优异,第一类和第二类错误率显著降低。最后,通过木板垂直密度轮廓的实例验证,证明了所提出方法在实际制造过程中优越的应用价值。 展开更多
关键词 非线性轮廓 异常点识别 支持向量回归 数据深度 聚类分析
在线阅读 下载PDF
边坡位移非线性时间序列采用支持向量机算法的智能建模与预测研究 被引量:66
17
作者 刘开云 乔春生 滕文彦 《岩土工程学报》 EI CAS CSCD 北大核心 2004年第1期57-61,共5页
介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面... 介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面,支持向量机算法较基于经验风险最小化原理的人工神经元网络算法都有很大的优越性,可以运用于实际工程。 展开更多
关键词 边坡 位移 非线性 时间序列 支持向量 回归算法 位移预测
在线阅读 下载PDF
处理非线性分类和回归问题的一种新方法(I)——支持向量机方法简介 被引量:188
18
作者 陈永义 俞小鼎 +1 位作者 高学浩 冯汉中 《应用气象学报》 CSCD 北大核心 2004年第3期345-354,共10页
简要介绍了近年来倍受瞩目的一种处理高度非线性分类、回归等问题的计算机学习的新方法———支持向量机 (SVM)方法 ;分析了这一方法的特点及其在数值预报产品释用及气象研究业务中的应用前景。SVM是一种有坚实理论基础的新颖的小样本... 简要介绍了近年来倍受瞩目的一种处理高度非线性分类、回归等问题的计算机学习的新方法———支持向量机 (SVM)方法 ;分析了这一方法的特点及其在数值预报产品释用及气象研究业务中的应用前景。SVM是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等 ,因此不同于现有的统计方法。从本质上看 ,它避开了从归纳到演绎的传统过程 ,实现了高效的从训练样本到预报样本的“转导推理”(transductiveinference) ,大大简化了通常的分类和回归等问题。SVM的最终决策函数只由少数的支持向量所确定 ,计算的复杂性取决于支持向量的数目 ,而不是样本空间的维数 ,这在某种意义上避免了“维数灾”。 展开更多
关键词 支持向量 模式识别 回归分析 密度估计 天气预报
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
19
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 客舱座椅 支持向量回归 粒子群算法 舒适度评价预测
在线阅读 下载PDF
基于非线性流形学习和支持向量机的文本分类算法 被引量:10
20
作者 任剑锋 梁雪 李淑红 《计算机科学》 CSCD 北大核心 2012年第1期261-263,共3页
为解决文本自动分类问题,提出一种流形学习和支持向量机相结合的文本分类算法(LLE-LSSVM)。LLE-LSSVM算法利用非线性流形学习算法LEE对高维文本特征进行非线性降维,挖掘出特征内在规律与本征信息,从而得到低维特征空间,然后将其输入到LS... 为解决文本自动分类问题,提出一种流形学习和支持向量机相结合的文本分类算法(LLE-LSSVM)。LLE-LSSVM算法利用非线性流形学习算法LEE对高维文本特征进行非线性降维,挖掘出特征内在规律与本征信息,从而得到低维特征空间,然后将其输入到LSSVM中进行学习,同时利用混沌粒子群算法对LSSVM参数进行优化,建立文本分类模型。仿真实验结果表明,LLE-LSSVM算法提高了文本分类准确率,减少了分类运行时间,是一种有效的文本分类算法。 展开更多
关键词 文本分类 支持向量 流形学习 遗传算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部