期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于深度神经网络的多聚焦红外图像非线性增强
1
作者 代文征 杨志武 余建国 《激光杂志》 CAS 北大核心 2024年第5期104-109,共6页
当红外图像中含有多个聚焦目标主体时,会导致红外图像质量下降,部分区域出现模糊,因此,提出基于深度神经网络的多聚焦红外图像非线性增强方法。在引导滤波的作用下,从红外图像中获取细节层图像和背景层图像,在细节层图像中建立局部清晰... 当红外图像中含有多个聚焦目标主体时,会导致红外图像质量下降,部分区域出现模糊,因此,提出基于深度神经网络的多聚焦红外图像非线性增强方法。在引导滤波的作用下,从红外图像中获取细节层图像和背景层图像,在细节层图像中建立局部清晰度评价函数,得到清晰的细节层和背景层并融合二者。利用构建的深度神经网络结构,建立非线性增益函数,通过设定阈值和调整子带系数,实现对多聚焦红外图像的非线性增强。测试结果表明,所提方法在增强图像过程中,并没有改变原始图像的亮度和纹理波动;增强后的图像信息熵比原图像提高了57%左右,图像抗噪性能值更高,平均为7.4 dB,图像更清晰,SSIM值更趋近于1,平均为0.98,增强后的图片与原图片图像相似度更高,更接近于真实图像。 展开更多
关键词 多聚焦红外图像 细节层图像 局部清晰度评价函数 子带系数 非线性增益函数
在线阅读 下载PDF
人工蜂群优化的非下采样Shearlet域引导滤波图像增强 被引量:7
2
作者 吴一全 孟天亮 吴诗婳 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第6期39-45,共7页
针对现有图像增强算法边缘保持性能不佳、抗噪性弱的问题,提出了一种改进的引导滤波图像增强算法——ABCO-NSST-GF。通过非下采样Shearlet变换(NSST)将图像分解成低频和高频2部分,利用引导滤波来增强低频系数,避免了高频噪声的放大;对... 针对现有图像增强算法边缘保持性能不佳、抗噪性弱的问题,提出了一种改进的引导滤波图像增强算法——ABCO-NSST-GF。通过非下采样Shearlet变换(NSST)将图像分解成低频和高频2部分,利用引导滤波来增强低频系数,避免了高频噪声的放大;对图像的高频系数进行非线性增益函数变换,在增强边缘及细节的同时抑制噪声。最后,对处理后的低频和高频系数实施NSST反变换,重构出最终的增强图像。由于引导滤波中的盒滤波半径与正则化参数对增强结果有较大影响,采用了混沌蜂群算法搜索其最佳值,确保增强结果达到最优。针对约70幅实际工程图像进行了实验,结果表明,ABCO-NSST-GF算法能够明显改善图像视觉效果,与NSCT自适应阈值法等4种算法相比,所得图像清晰度、对比度和信息熵平均提高25.2%,与空域引导滤波算法相比,P峰值信噪比平均提高20.9%。 展开更多
关键词 图像增强 非下采样Shearlet变换 引导滤波 人工蜂群优化 非线性增益函数
在线阅读 下载PDF
Curvelet变换域侧扫声纳图像增强算法 被引量:6
3
作者 盛惠兴 孟凡玲 +2 位作者 李庆武 马国翠 曹晔锋 《海洋测绘》 2012年第1期8-10,17,共4页
针对海底侧扫声纳图像对比度低、纹理弱、噪声严重等问题,提出了一种基于第二代Curvelet变换的声纳图像增强算法。首先对原始声纳图像进行多尺度、多方向的Curvelet变换分解,得到低频子带和高频子带;然后引入非线性S型函数对低频系数进... 针对海底侧扫声纳图像对比度低、纹理弱、噪声严重等问题,提出了一种基于第二代Curvelet变换的声纳图像增强算法。首先对原始声纳图像进行多尺度、多方向的Curvelet变换分解,得到低频子带和高频子带;然后引入非线性S型函数对低频系数进行处理,提高图像整体的对比度;采用一种可以避免过度增强的新型非线性函数对各尺度的高频子带系数进行处理,提高图像整体的对比度,增强图像边缘和纹理细节,并通过估计噪声水平设定阈值进行阈值降噪。最后经Curvelet逆变换得到增强图像。实验表明,该方法不仅改善了海底侧扫声纳图像对比度低的问题,而且降低了噪声,突出了声纳图像的边缘和纹理细节。 展开更多
关键词 CURVELET变换 S型函数 非线性增益函数 侧扫声纳图像 图像增强
在线阅读 下载PDF
一种新的NSCT域图像增强算法 被引量:3
4
作者 全永奇 邓家先 +1 位作者 寇计萍 霍荣 《计算机应用与软件》 CSCD 2016年第3期206-209,221,共5页
针对实际应用中所采集的部分图像对比度低、边缘细节模糊的问题,提出一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)的多尺度Retinex与非线性增益函数相结合的图像增强算法。使用改进的多尺度Retinex算法对... 针对实际应用中所采集的部分图像对比度低、边缘细节模糊的问题,提出一种基于非下采样Contourlet变换NSCT(Nonsubsampled Contourlet Transform)的多尺度Retinex与非线性增益函数相结合的图像增强算法。使用改进的多尺度Retinex算法对低频子带系数进行处理,以提升图像的灰度动态范围并改善图像的亮度均匀性;采用非线性增益函数和贝叶斯萎缩阈值相结合的方法对各个高频子带系数进行处理,在提升图像纹理细节的同时抑制噪声。实验结果表明:该算法能够有效提升图像对比度和清晰度,增强图像细节信息,有效改善视觉效果。 展开更多
关键词 图像增强 非下采样CONTOURLET变换 多尺度Retinex法 非线性增益函数
在线阅读 下载PDF
基于非下采样Contourlet变换的织物疵点检测方法
5
作者 张莹莹 韩润萍 《丝绸》 CAS 北大核心 2014年第5期38-42,共5页
提出了一种基于非下采样Contourlet变换的织物疵点检测新方法。首先对织物疵点图像进行非下采样Contourlet变换(NSCT)得到一个低频子带和多个高频子带;然后通过代价函数在高频子带中挑选最优子带并阈值化,同时对低频子带采用非线性增益... 提出了一种基于非下采样Contourlet变换的织物疵点检测新方法。首先对织物疵点图像进行非下采样Contourlet变换(NSCT)得到一个低频子带和多个高频子带;然后通过代价函数在高频子带中挑选最优子带并阈值化,同时对低频子带采用非线性增益函数进行增强及阈值化处理;最后将经上述处理后的低频子带与高频子带进行融合与分割,以二值图像的方式从织物背景中提取出疵点。对比实验结果表明,该方法具有较高的检出率及良好的适应性。 展开更多
关键词 织物疵点检测 非下采样CONTOURLET变换 非线性增益函数 图像分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部