期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
电力需求的非线性回归组合神经网络预测研究 被引量:12
1
作者 汪克亮 杨力 《计算机工程与应用》 CSCD 北大核心 2010年第28期225-227,共3页
电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其... 电力需求同时具有典型的增长性和季节波动性二重趋势,从而显示出复杂的非线性组合特征。为了提高电力需求的预测精度,提出一种新的预测模型——非线性回归组合神经网络模型。该模型有效兼顾了非线性回归分析和人工神经网络的优点,与其他预测模型进行了比较,该模型明显提高了电力需求预测的精度。仿真实验表明了该模型用于电力需求预测的可行性和有效性。同时,该模型也可以作为其他类似季节型时间序列预测建模的有效工具。 展开更多
关键词 电力需求预测 非线性回归组合神经网络 二重趋势性
在线阅读 下载PDF
基于非线性自适应回归神经网络的GPS/IMU组合导航方法 被引量:16
2
作者 邓天民 杨其芝 +1 位作者 方芳 岳云霞 《科学技术与工程》 北大核心 2019年第24期274-280,共7页
车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于... 车道级高精度定位导航是智能网联汽车的基本配置,全球定位系统(globlal positioning system,GPS)/惯性测量单元(inertial meansurement unit,IMU)组合导航是高精度定位的关键技术之一。根据汽车行驶过程中高精度定位要求,提出了应用于智能网联汽车的基于非线性自适应回归(nonlinear autoregressive exogenous,NARX)神经网络的GPS/IMU组合导航方法。首先,根据IMU传感器数据特性,建立了基于扩展卡尔曼滤波的惯性导航系统(inertial navigation system,INS)模型,其次,基于NARX神经网络,建立了GPS/INS组合定位训练和预测模型,然后,基于全球导航卫星系统(global navigation satellite system,GNSS)、实时动态差分技术(real-time kinematic,RTK)、INS等技术,设计了智能网联汽车RTK高精度定位数据采集实验系统,并收集了实验数据。最后,对NARX网络训练误差和GNSS信号长时间失效情况下定位预测误差进行了讨论与分析。实验结果表明,该方法在GNSS信号失效5 min情况下,定位预测误差在2.5 m以内,满足一般情况下,短、中、长隧道中智能网联汽车定位应用要求。 展开更多
关键词 智能网联汽车 车道级定位 非线性自适应回归神经网络 扩展卡尔曼滤波
在线阅读 下载PDF
基于粒子群-变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究 被引量:21
3
作者 姜宇航 王伟 +3 位作者 邹丽芳 王如宾 刘世藩 段雪雷 《岩土力学》 EI CAS CSCD 北大核心 2022年第S01期601-612,共12页
以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将... 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。 展开更多
关键词 滑坡位移预测 粒子群算法 变分模态分解 格兰杰因果检验 非线性回归神经网络 门控循环单元
在线阅读 下载PDF
基于优化非线性自回归神经网络模型的水质预测 被引量:13
4
作者 唐亦舜 徐庆 +1 位作者 刘振鸿 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第3期93-100,共8页
针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(... 针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(DO)质量浓度和浊度3项水质指标的变化趋势。结果表明:优化后的NAR神经网络模型具有较好的非线性处理能力;当输入数据量为180,pH、DO质量浓度和浊度的神经网络模型的延迟阶数分别为2、3、9,隐含层神经元数为10时,NAR神经网络模型对pH、DO质量浓度和浊度的预测均方根误差分别为0.053、0.382 mg/L和17.300 NTU,平均绝对百分比误差分别为0.53%、3.97%和18.01%,预测效果较好。 展开更多
关键词 水质预测 非线性回归神经网络 PH 溶解氧 浊度 模型优化
在线阅读 下载PDF
自回归神经网络的电离层总电子含量预报 被引量:10
5
作者 吉长东 王强 +1 位作者 沈祎凡 潘飞 《导航定位学报》 CSCD 2018年第4期96-101,共6页
为了进一步提高TEC的预报精度,针对TEC时间序列高噪声、非平稳、包含线性和非线性动态序列的特性,运用经验模态分解和非线性自回归动态神经网络,基于分解-预测-重构的思想构建EMD-NAR预测模型;并对比分析EMD-NAR组合模型和单一模型的预... 为了进一步提高TEC的预报精度,针对TEC时间序列高噪声、非平稳、包含线性和非线性动态序列的特性,运用经验模态分解和非线性自回归动态神经网络,基于分解-预测-重构的思想构建EMD-NAR预测模型;并对比分析EMD-NAR组合模型和单一模型的预报精度,同时运用EMD-NAR预测模型分析不同环境下的电离层TEC时间序列。实验结果表明EMD-NAR动态神经网络模型能很好地反映电离层TEC的变化特性,平静期和活跃期的预测平均相对精度分别为94%和88.3%,预报残差小于1个TECu的分别占71%和68.5%,小于3个TECu的分别占90.3%和87.5%。 展开更多
关键词 非线性回归神经网络 电离层预报 时间序列 经验模态分解 总电子含量
在线阅读 下载PDF
激励函数可调的NARX神经网络 被引量:1
6
作者 李明 杨成梧 《江南大学学报(自然科学版)》 CAS 2006年第4期445-448,共4页
提出了一种隐层神经元激励函数可调的具有外部输入的非线性回归(NARX)神经网络,它在进行权值调整的同时,还对各隐层神经元激励函数的参数进行自适应调节;并推导出激励函数参数的学习算法,从而使NARX神经网络更符合生物神经网络.通过系... 提出了一种隐层神经元激励函数可调的具有外部输入的非线性回归(NARX)神经网络,它在进行权值调整的同时,还对各隐层神经元激励函数的参数进行自适应调节;并推导出激励函数参数的学习算法,从而使NARX神经网络更符合生物神经网络.通过系统辨识的仿真实例,说明了隐层神经元激励函数对网络性能的影响,还验证了文中提出的NARX神经网络具有更快的收敛速度,并且能有效地避免算法陷入局部最小. 展开更多
关键词 具有外部输入的非线性回归神经网络 激励函数 学习算法
在线阅读 下载PDF
基于EMD优化NAR动态神经网络的地铁客流量短时预测模型 被引量:10
7
作者 马飞虎 金依辰 孙翠羽 《应用科学学报》 CAS CSCD 北大核心 2020年第6期936-943,共8页
为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量... 为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值. 展开更多
关键词 地铁客流量 短时预测 非线性回归动态神经网络 经验模态分解 组合模型
在线阅读 下载PDF
EMD与NARX神经网络的风电场总功率组合预测 被引量:6
8
作者 张振华 马超 +1 位作者 徐瑾辉 欧阳泽拯 《计算机工程与应用》 CSCD 北大核心 2016年第12期265-270,共6页
探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平... 探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平稳时间序列进行经验模态分解,得到不同频带本征模式分量的平稳序列。对不同频带的平稳分量建立相应的NARX神经网络预测模型,并将各分量模型的预测值进行等权求和得到最终预测值。此外,为研究不同时间间隔对预测结果的影响,采用某大型风电场时间间隔为5 min与15 min的数据进行实验。预测结果表明,提出的组合预测模型适合于总功率预测,其预测效果比传统模型的效果更佳,且时间间隔为5 min的数据比时间间隔为15 min的数据预测精度更高。 展开更多
关键词 经验模态分解 非线性回归神经网络(带外部输入的)(NARX) 非平稳时间序列 风电场 总功率
在线阅读 下载PDF
改进非线性外源自回归网络的潮位实时预测 被引量:2
9
作者 李连博 武文昊 +2 位作者 章文俊 尹建川 朱振宇 《科学技术与工程》 北大核心 2022年第22期9728-9735,共8页
中国海域辽阔,海岸带面积约占全国总面积的13%,在沿海区域的交通运输及经济建设领域,都需要具备精确的潮位数据,因此实现精准快速的潮位预报具有重要的应用价值和实际意义。为了提高潮位预测精度和稳定性,提出了一种基于带外源输入的非... 中国海域辽阔,海岸带面积约占全国总面积的13%,在沿海区域的交通运输及经济建设领域,都需要具备精确的潮位数据,因此实现精准快速的潮位预报具有重要的应用价值和实际意义。为了提高潮位预测精度和稳定性,提出了一种基于带外源输入的非线性自回归(nonlinear auto-regressive exogenous, NARX)神经网络的实时潮位预测方法,并在其基础上做了相应改进。首先采用了模块化潮位预测(modular tide level prediction)方法,将潮汐数据分为天文潮及非天文潮两部分,其次引入滑动时间窗(sliding time window, STW)概念构建出改进的MS-NARX神经网络预测模型。利用美国比斯坎湾(Biscayne bay)的实测潮汐值数据进行潮位预测的仿真试验,并与传统NARX神经网络及自适应粒子群算法优化的基本反向传播(SAPSO-BP)神经网络两种预测方法进行比较,结果表明在MAE、MSE及RMSE三项精度指标测算中,MS-NARX神经网络均为最小,可见其针对数据预测的精度和稳定性均优于SAPSO-BP神经网络和传统NARX神经网络,能够为提高船舶运营效率和保障船舶航行安全提供指导。 展开更多
关键词 非线性外源自回归神经网络 调和分析 SAPSO-BP 潮汐预测
在线阅读 下载PDF
可重构功放的新颖NARX神经网络逆向建模研究 被引量:1
10
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 带外部输入的非线性回归(NARX)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
在线阅读 下载PDF
基于NARX神经网络的热负荷预测中关键影响因素分析 被引量:10
11
作者 谢吉洋 闫冬 +1 位作者 谢垚 马占宇 《计算机应用》 CSCD 北大核心 2018年第11期3180-3187,共8页
在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数据集训练得到带外部输入的非线性自回归(NARX)神经网络模型,... 在区域供热(DH)网络中,精确预测热负荷已被认为是提高效率和节省成本的重要环节。为了提高预测精度,研究不同影响因素对热负荷预测的影响极为重要。使用引入不同影响因素的数据集训练得到带外部输入的非线性自回归(NARX)神经网络模型,并比较其预测性能,以讨论直接太阳辐射和风速对热负荷预测的影响程度。实验结果表明,直接太阳辐射和风速都是热负荷预测中的关键影响因素。只引入风速时,预测模型的平均绝对百分比误差(MAPE)和均方根误差(RMSE)均低于只引入直接太阳辐射,同时引入风速和直接太阳辐射能够得到最佳的模型预测性能,但是对于MAPE和RMSE降低的贡献不大。 展开更多
关键词 区域供热 热负荷预测 非线性回归神经网络 直接太阳辐射 风速
在线阅读 下载PDF
隧道围岩变形的非线性自回归时间序列预测方法研究 被引量:15
12
作者 文明 张顶立 +3 位作者 房倩 齐俊 方黄城 陈文博 《北京交通大学学报》 CAS CSCD 北大核心 2017年第4期1-7,共7页
针对传统时间序列预测模型的单一线性和忽略施工过程影响的静态局限性,提出非线性自回归(包括NARNN与NARXNN)时间序列预测模型.该模型通过引入动态施工影响因子作为附加的外部输入,同时结合模型本身的反馈结构和延迟单元,在结构和动态... 针对传统时间序列预测模型的单一线性和忽略施工过程影响的静态局限性,提出非线性自回归(包括NARNN与NARXNN)时间序列预测模型.该模型通过引入动态施工影响因子作为附加的外部输入,同时结合模型本身的反馈结构和延迟单元,在结构和动态特性上更加符合实际系统,可以非线性动态地考虑隧道施工全过程.运用该模型对史家山2号隧道施工过程中的围岩水平收敛和地表变形进行预测.结果表明:1)非线性自回归预测模型比传统的ARMA预测模型的预测精度高、适应性好;2)通过多次预测并对结果取平均值,可以保证非线性自回归预测模型预测结果的预测精度和稳健性;3)通过优化动态施工影响因子的取值方法,可以进一步提高NARXNN时间序列预测模型的预测精度. 展开更多
关键词 公路隧道 时间序列模型 非线性回归神经网络 动态施工影响因子 围岩变形预测
在线阅读 下载PDF
基于PSO-NARX网络的司机驾驶行为分析方法 被引量:2
13
作者 王心仪 程剑锋 易海旺 《铁道学报》 EI CAS CSCD 北大核心 2024年第9期94-101,共8页
舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的... 舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的列车司机驾驶行为分析方法。该方法构建了具有时序特征的NARX网络模型,并选取多项影响司机决策的参数作为输入,利用粒子群优化算法(PSO)确定网络的权重和阈值,对下一时刻列车运行情况进行预测。仿真结果表明:本文提出的PSO-NARX网络分析模型的预测效果优于前馈型神经网络(BP)、PSO-BP、NARX,相比于BP算法,迭代步数降低了373步,误差降低了8382%,相关系数达到了90117%。通过此预测,可以优化列车的自动驾驶设备性能指标,保障列车准时的同时,提高了乘客乘坐的舒适性。 展开更多
关键词 高速铁路 非线性回归神经网络 粒子群优化算法 驾驶行为 辨识
在线阅读 下载PDF
数据驱动的水泥立磨系统出风口温度预测研究
14
作者 吕景祥 叶建辉 +3 位作者 石洋 刘清涛 马玉钦 张得洋 《安全与环境学报》 北大核心 2025年第4期1633-1642,共10页
水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于... 水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于互相关延时分析优化的非线性自回归外部输入(Nonlinear AutoRegressive with eXogenous inputs,NARX)神经网络,并用于立磨出风口温度预测。首先,采用皮尔逊相关性分析从多个参数中确定影响立磨出风口温度的关键参数。同时,利用互相关延时分析进行时滞分析,解决大时滞问题。其次,通过优化的NARX神经网络,实现非线性工况下温度的精准预测。案例验证结果表明,所提出模型的拟合度达到了0.99967,均方误差为0.56483,预测精度达到了98.4%以上。预测模型结果可指导立磨操作人员及时控制立磨振动,提高水泥产量并降低能耗和碳排放。 展开更多
关键词 环境工程学 数据驱动 皮尔逊相关性分析 延时分析 非线性回归外部输入神经网络
在线阅读 下载PDF
基于履带车辆车体动态响应的行驶路面不平度识别 被引量:3
15
作者 凌启辉 戴巨川 +3 位作者 陈盛钊 孙飞鹰 汪国胜 廖力力 《中国机械工程》 EI CAS CSCD 北大核心 2022年第1期62-69,共8页
建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评... 建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评价指标,并给出了上述三个指标的融合方法。基于正交试验设计的思路分析并实现了路面不平度识别模型输入数量和识别效果的平衡,简化了测试系统传感器的布置。分析了不同的路面、采样频率和车速下的路面不平度识别效果。结果表明,提出的不平度识别方法满足工程实际需求。 展开更多
关键词 履带车辆 路面不平度识别 动态响应 带外源输入的非线性回归神经网络
在线阅读 下载PDF
电磁发射系统监测量预测方法 被引量:5
16
作者 腾腾 赵治华 《电工技术学报》 EI CSCD 北大核心 2018年第22期5233-5243,共11页
对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信... 对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信息为外部输入的非线性自回归神经网络(NARX)模型,实现了对定子温度多时间尺度的预测。ARIMA模型为其他三种模型提供了时序数据分析时确定阶数的依据。在不同于训练数据集的试验数据上应用四种预测模型,比较和分析了四种方法得到的多时间尺度预测结果:对于不超过1min的短时温度预测,四种方法都具有较好的效果;对于1~4min的中长时间预测,引入工况信息的NARX神经网络方法具有优势。四种方法对分段供电直线电机定子温度预测都不具有超过4min的预测能力。 展开更多
关键词 电磁发射系统 分段供电直线电机 监测量预测 含外部输入的非线性回归神经网络 工况信息
在线阅读 下载PDF
不同期NDF数据与人民币汇率波动相关性研究 被引量:3
17
作者 侯铁珊 王楠 《财经问题研究》 CSSCI 北大核心 2013年第6期48-51,共4页
汇率预测是一个非线性问题,本文使用非线性自回归神经网络对人民币汇率进行预测,由于外部输入X(t)的选择与预测精度关系密切,本文使用NDF作为X(t),取得了良好的效果。市场中存在多种时间跨度的NDF,笔者对比了不同时间周期的NDF作为X(t)... 汇率预测是一个非线性问题,本文使用非线性自回归神经网络对人民币汇率进行预测,由于外部输入X(t)的选择与预测精度关系密切,本文使用NDF作为X(t),取得了良好的效果。市场中存在多种时间跨度的NDF,笔者对比了不同时间周期的NDF作为X(t)时的网络性能,得出了NDF时间跨度与预测精度相关性不大,在预测中都能达到很好的效果,并且NDF参与汇率预测是有效的结论。 展开更多
关键词 人民币汇率 汇率预测 NDF 非线性回归神经网络
在线阅读 下载PDF
聚合物分子量分布的多变量动态系统模型
18
作者 姜尔超 曹柳林 《控制工程》 CSCD 2005年第S1期59-61,共3页
为了解决聚合产品分子量分布控制的难题,将神经网络引入对其进行了无需任何系统内部先验知识的黑箱建模。所使用的神经网络是由B样条神经网络和非线性递归神经网络(DRNN)组合而成,并使用误差反传算法对网络进行训练和学习,从而建立了多... 为了解决聚合产品分子量分布控制的难题,将神经网络引入对其进行了无需任何系统内部先验知识的黑箱建模。所使用的神经网络是由B样条神经网络和非线性递归神经网络(DRNN)组合而成,并使用误差反传算法对网络进行训练和学习,从而建立了多变量动态系统的分子量分布模型。在模型建立中将控制变量与分布参数的函数关系利用非线性递归神经网络描述,分子量分布函数使用B样条神经网络表示,仿真研究结果证明该方法取得了预期的建模效果,具有一定的推广实用价值。 展开更多
关键词 非线性回归神经网络 B样条神经网络 分子量分布 建模
在线阅读 下载PDF
南极天文光学望远镜智能化除霜方法 被引量:1
19
作者 冯晴晨 李晓燕 《科学技术与工程》 北大核心 2019年第24期132-138,共7页
南极Dome A(冰穹A)因其优良的观测条件被誉为地球上最好的天文观测台址之一。Dome A温度常年处于-30^-80℃,相对湿度40%~80%,温度起伏大,望远镜镜面易结霜,影响天文观测的效率和质量。为实现无人值守的智能化镜面除霜、减少除霜对观测... 南极Dome A(冰穹A)因其优良的观测条件被誉为地球上最好的天文观测台址之一。Dome A温度常年处于-30^-80℃,相对湿度40%~80%,温度起伏大,望远镜镜面易结霜,影响天文观测的效率和质量。为实现无人值守的智能化镜面除霜、减少除霜对观测时间的占用、降低除霜对镜面视宁度的影响、减少除霜对能源的消耗,提出了智能化除霜方法。首先,分析环境、科学数据、仪器三者的关系,利用外部输入非线性自回归(nonlinear auto regressive models with exogenous input,NARX)时间序列神经网络构建望远镜镜面状态的预测模型;其次,设计南极望远镜智能化除霜仿真系统,实时预测镜面情况,根据预测结果模拟采取相应的应对措施。结果表明该方法能有效实现智能化除霜,减少了人为干预,节约了观测时间,提高了望远镜运行的可靠性。 展开更多
关键词 南极天文光学望远镜 镜面除霜 智能预测 非线性回归(NARX)神经网络
在线阅读 下载PDF
基于预测模型的发电厂异常数据辨识方法 被引量:6
20
作者 高骞 张浩天 汤奕 《电力工程技术》 2020年第4期164-170,共7页
发电统计数据是我国实施电力监管的重要依据,其中的发电厂用电率作为反映电厂生产效能、论证节能降耗情况的关键指标,验证其上报数据的真实性和准确性十分重要。为此,提出一种基于预测模型的发电厂异常数据辨识方法。该方法首先利用Adab... 发电统计数据是我国实施电力监管的重要依据,其中的发电厂用电率作为反映电厂生产效能、论证节能降耗情况的关键指标,验证其上报数据的真实性和准确性十分重要。为此,提出一种基于预测模型的发电厂异常数据辨识方法。该方法首先利用Adaboost改进非线性有源自回归模型(NARX)神经网络构建发电厂用电率预测模型,通过不断引入上报值以动态的方式对当前时刻发电厂用电率进行预测。当发电厂用电率时间序列出现突变时,残差时间序列会出现明显的增大或减小,进而利用孤立森林算法得到各残差向量组的异常分值从而辨识出异常点。最后,利用该方法对注入了虚假数据的实际发电数据进行辨识,验证了所提方法的有效性。 展开更多
关键词 发电厂用电率 异常数据 非线性有源自回归模型(NARX)神经网络 ADABOOST算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部