研究了一类带有非线性耗散项的双曲型方程 u tt - ∑ n i=1 ( ? u ? x i p-2 ? u ? x i )+a|u t| q-2 u t=b|u| r-2 u 在有界闭区域内的初边值问题,通过在Sobolev空间W 1,p 0(Ω) 上构造稳定集,证明了这类问题的整体解的存在性,并利用Ko...研究了一类带有非线性耗散项的双曲型方程 u tt - ∑ n i=1 ( ? u ? x i p-2 ? u ? x i )+a|u t| q-2 u t=b|u| r-2 u 在有界闭区域内的初边值问题,通过在Sobolev空间W 1,p 0(Ω) 上构造稳定集,证明了这类问题的整体解的存在性,并利用Komornik的一个重要引理给出了整体解的渐近性态.展开更多
文摘研究了一类带有非线性耗散项的双曲型方程 u tt - ∑ n i=1 ( ? u ? x i p-2 ? u ? x i )+a|u t| q-2 u t=b|u| r-2 u 在有界闭区域内的初边值问题,通过在Sobolev空间W 1,p 0(Ω) 上构造稳定集,证明了这类问题的整体解的存在性,并利用Komornik的一个重要引理给出了整体解的渐近性态.
基金The National Natural Science Foundation of China(11202106)the Natural Science Foundation of the Education Department of Anhui Province(KJ2015A347,KJ2014A151,KJ2013B153)the Excellent Youth Talented Project of the Colleges and Universities of Anhui Province(gxyq ZD2016520)