期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的非线性动态系统辨识方法 被引量:13
1
作者 吴德会 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第14期3169-3171,3187,共4页
讨论了辨识一类非线性系统模型的方法。先假设原非线性动态系统可由静态非线性子环节和动态线性子环节串联——H模型来表示。将H模型的非线性方程转换为类线性形式,从而建立线性过渡模型。对原始测量数据进行组合运算获得线性中间模型... 讨论了辨识一类非线性系统模型的方法。先假设原非线性动态系统可由静态非线性子环节和动态线性子环节串联——H模型来表示。将H模型的非线性方程转换为类线性形式,从而建立线性过渡模型。对原始测量数据进行组合运算获得线性中间模型的训练样本集,并通过支持向量机线性回归算法求取过渡模型参数。最后再建立过渡模型与H模型系数之间的关系,从而反推出非线性模型参数,实现非线性动态系统辨识。仿真结果表明了该方法的有效性。 展开更多
关键词 H模型 非线性动态系统辨识 支持向量机 回归算法
在线阅读 下载PDF
一种用于非线性动态辨识的新型神经网络
2
作者 张剑 林瑞昌 毕天昊 《控制工程》 CSCD 北大核心 2024年第8期1383-1391,共9页
为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加... 为提高非线性动态系统辨识(NDSI)的效果,在结合自建型模糊神经网络(SCFNN)和多层神经元神经网络(MLPNN)的基础上,提出一种自建递归型模糊神经网络(SCRFNN)。SCRFNN相较于前者,多了一个递归通道与抑制模糊规则产生机制;相较于后者,增加了模糊推论与一个递归通道。为验证SCRFNN在系统辨识中的有效性,设计一个新的NDSI在线学习模型与代码设计流程图,并以此作为在线学习架构,将以上3个神经网络模型对4个串-并型非线性动态系统进行辨识分析。经过仿真表明,新提出的SCRFNN通过存储内部状态,具备了映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。且在模糊规则数、学习收敛速度、学习与预测误差均方根值、预测精准度方面也取得了良好的效果。 展开更多
关键词 自建递归型模糊神经网络 自建型模糊神经网络 多层神经元神经网络 非线性动态系统辨识
在线阅读 下载PDF
基于在线强化学习的风电系统自适应负荷频率控制 被引量:24
3
作者 杨丽 孙元章 +2 位作者 徐箭 廖思阳 彭刘阳 《电力系统自动化》 EI CSCD 北大核心 2020年第12期74-83,共10页
大规模风电接入给系统带来新的不确定性,影响系统频率响应特性,从数据驱动的角度出发,提出了一种基于自适应动态模型的在线强化学习方法,用于系统的负荷频率控制。建立低秩自编码器特征提取网络,从所量测的低维数据中发现隐藏特征;基于... 大规模风电接入给系统带来新的不确定性,影响系统频率响应特性,从数据驱动的角度出发,提出了一种基于自适应动态模型的在线强化学习方法,用于系统的负荷频率控制。建立低秩自编码器特征提取网络,从所量测的低维数据中发现隐藏特征;基于特征网络,建立非线性动态系统稀疏辨识学习模型,感知系统动态模型的潜在物理状态,提升模型在线学习效率;通过结合模型预测控制,进行实时决策控制。所提出方法能够有效解决传统模型预测控制对系统全局模型准确性的依赖问题,加强控制器对系统动态模型的自适应性,且能有效跟踪风电输出功率的随机波动。最后,以接入四型风机的负荷频率控制模型为例,验证所提方法的有效性。 展开更多
关键词 负荷频率控制 低秩自编码器 非线性动态系统稀疏辨识 模型预测控制 在线强化学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部