期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于核Fisher判别分析的目标识别 被引量:37
1
作者 李映 焦李成 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2003年第2期179-182,共4页
核Fisher判别分析是基于Fisher线性判别提出的一种非线性分类方法,其主要思想是首先把样本映射到某一特征空间,然后在此特征空间进行Fisher线性判别,这样就隐含地实现了原输入空间的非线性判别.分析了核Fisher判别方法的分类机理,然后... 核Fisher判别分析是基于Fisher线性判别提出的一种非线性分类方法,其主要思想是首先把样本映射到某一特征空间,然后在此特征空间进行Fisher线性判别,这样就隐含地实现了原输入空间的非线性判别.分析了核Fisher判别方法的分类机理,然后基于此方法对三类实际的船舶目标噪声谱进行了识别,并与神经网络、支撑矢量机等其他分类方法做了比较.实验结果表明,核Fisher判别分析(加上一线性支撑矢量机做阈值估计)的识别效果优于其他分类算法. 展开更多
关键词 目标识别 FISHER判别 核函数 特征空间 非线性分类法 船舶目标
在线阅读 下载PDF
Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis 被引量:5
2
作者 高成 黄姣英 +1 位作者 孙悦 刁胜龙 《Journal of Central South University》 SCIE EI CAS 2012年第2期459-464,共6页
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi... A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults. 展开更多
关键词 non-linear circuits fault diagnosis relevance vector machine particle swarm optimization KURTOSIS ENTROPY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部