采用非线性减振器NES(Nonlinear Energy Sink)抑制旋转叶片的受迫振动响应。首先采用拟Hamilton原理建立了旋转叶片与NES耦合系统的动力学方程,并采用Galerkin离散得到了系统的非线性常微分方程组。而后采用谐波平衡法求得了旋转叶片受...采用非线性减振器NES(Nonlinear Energy Sink)抑制旋转叶片的受迫振动响应。首先采用拟Hamilton原理建立了旋转叶片与NES耦合系统的动力学方程,并采用Galerkin离散得到了系统的非线性常微分方程组。而后采用谐波平衡法求得了旋转叶片受迫振动一阶响应幅值的解析表达式。最后分别讨论了转速、NES质量、阻尼、非线性刚度和安装位置对振动抑制的影响。分析发现,NES能够随着转速的变化自动匹配叶片的共振频率,从而起到降低叶片共振响应的作用。另外,增大NES质量、阻尼、非线性刚度或将NES安装在靠近叶片自由端都能有效降低叶片的共振响应。展开更多
Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of pr...Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.展开更多
文摘采用非线性减振器NES(Nonlinear Energy Sink)抑制旋转叶片的受迫振动响应。首先采用拟Hamilton原理建立了旋转叶片与NES耦合系统的动力学方程,并采用Galerkin离散得到了系统的非线性常微分方程组。而后采用谐波平衡法求得了旋转叶片受迫振动一阶响应幅值的解析表达式。最后分别讨论了转速、NES质量、阻尼、非线性刚度和安装位置对振动抑制的影响。分析发现,NES能够随着转速的变化自动匹配叶片的共振频率,从而起到降低叶片共振响应的作用。另外,增大NES质量、阻尼、非线性刚度或将NES安装在靠近叶片自由端都能有效降低叶片的共振响应。
文摘在气动热环境及横向激励作用下,对粘弹性轴向运动板的振动特性及减振问题进行分析。基于von Karman非线性本构理论和线性势流理论,考虑平面内热载荷和摄动压力对轴向运动板横向弯曲挠度的影响,并对该系统安装非线性能量阱(Nonlinear Energy Sink以下简称NES)减振器,建立了在空气-热环境中板的振动模型。通过数值模拟对非线性微分方程进行了近似分析得到了板的位移时间响应解析解。结果表明,在给定的几何参数范围内,NES可以达到很好的振动抑制效果,实现了振动抑制功能。
文摘Presented in this paper is a semi active vibration control strategy based on the vibration absorber with adjustable clearance in elastic component. The control law of the clearance for alleviating the vibration of primary system is derived by means of harmonic balancing technique so that the working frequency of the vibration absorber can trace the frequency variation of the harmonic excitation. The efficacy of the strategy is demonstrated by numerical simulations for attenuating the steady state vibration of a SDOF system and a 2 DOF system, which are under the harmonic excitation with slowly varied frequency in a wide range.