最大信息系数(Maximum Information Coefficient,MIC)能够很好的检测成对变量间的线性和非线性依赖关系,但却不能直接用于检测三元变量间的相关关系.基于MIC的思想和全相关的概念,本文提出了一种直接检测三元变量间一维流形依赖关系的...最大信息系数(Maximum Information Coefficient,MIC)能够很好的检测成对变量间的线性和非线性依赖关系,但却不能直接用于检测三元变量间的相关关系.基于MIC的思想和全相关的概念,本文提出了一种直接检测三元变量间一维流形依赖关系的方法—最大全相关系数(Maximal Total Correlation Coefficient,MTCC).MTCC用落在[0,1]区间上的值来表明三元变量间一维流形依赖关系的强弱,其中0和1分别表示最弱和最强的依赖关系.使用MIC的计算策略,本文还提出了一种有效的动态规划方法来近似计算MTCC的值.仿真实验说明MTCC与非线性相关信息熵(Nonlinear Correlation Information Entropy,NCIE)相比具有更好的通用性和公平性,真实数据的分析验证了MTCC的实用性.最后,强调了其专用性.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite...To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.展开更多
文摘最大信息系数(Maximum Information Coefficient,MIC)能够很好的检测成对变量间的线性和非线性依赖关系,但却不能直接用于检测三元变量间的相关关系.基于MIC的思想和全相关的概念,本文提出了一种直接检测三元变量间一维流形依赖关系的方法—最大全相关系数(Maximal Total Correlation Coefficient,MTCC).MTCC用落在[0,1]区间上的值来表明三元变量间一维流形依赖关系的强弱,其中0和1分别表示最弱和最强的依赖关系.使用MIC的计算策略,本文还提出了一种有效的动态规划方法来近似计算MTCC的值.仿真实验说明MTCC与非线性相关信息熵(Nonlinear Correlation Information Entropy,NCIE)相比具有更好的通用性和公平性,真实数据的分析验证了MTCC的实用性.最后,强调了其专用性.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.
基金Project(41374118)supported by the National Natural Science Foundation,ChinaProject(20120162110015)supported by Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(2015M580700)supported by the China Postdoctoral Science Foundation,ChinaProject(2016JJ3086)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2015JC3067)supported by the Hunan Provincial Science and Technology Program,ChinaProject(15B138)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.