期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
非线性MIMO传感器信号重构中粗差的探测与修复 被引量:1
1
作者 刘丹 魏国 +1 位作者 孙金玮 刘昕 《电子测量技术》 2008年第7期141-146,共6页
本文以多输入多输出(MIMO)非线性传感器系统为背景,在Ferguson-Srikantan检验法和RBF神经网络拟合法的基础上提出了一种训练样本集中粗差定位与修复方法。传统粗差检验方法以残差作为诊断统计量,容易对高杠杆点和粗差点产生误判。而建... 本文以多输入多输出(MIMO)非线性传感器系统为背景,在Ferguson-Srikantan检验法和RBF神经网络拟合法的基础上提出了一种训练样本集中粗差定位与修复方法。传统粗差检验方法以残差作为诊断统计量,容易对高杠杆点和粗差点产生误判。而建立在学生氏残差和外学生氏残差基础上的F-S检验法能高效地区分两者,并定位粗差点,然后利用RBF神经网络拟合法估计并替换粗差点,从而完成训练样本集的修复。实验表明,该方法具有很强的鲁棒性,在精确定位和准确修复粗差数据的同时提高了传感器信号重构的效率。 展开更多
关键词 非线性传感器 信号重构 粗差定位 F-S检验 RBF神经网络
在线阅读 下载PDF
基于非线性温度传感器的高精度测量方案设计 被引量:4
2
作者 胡斯 王国富 +3 位作者 叶金才 王小红 李明亮 龙琴 《仪表技术与传感器》 CSCD 北大核心 2017年第5期112-115,121,共5页
针对NTC热敏电阻应用于高精度温度测量时,存在其R-T(电阻-温度)特性呈非线性关系以及温漂影响测量精度等问题,设计了一种高精度测量方案。该方案选用四线制与传感器连接,采用微小恒流源作为激励,自适应选择通道进行数据采集,并通过USB... 针对NTC热敏电阻应用于高精度温度测量时,存在其R-T(电阻-温度)特性呈非线性关系以及温漂影响测量精度等问题,设计了一种高精度测量方案。该方案选用四线制与传感器连接,采用微小恒流源作为激励,自适应选择通道进行数据采集,并通过USB通信把数据传送到PC机进行数据拟合。经验证,设计的传感器功耗低至0.1μW,温度测量精度大于0.01℃,特别是在20~50℃区间,测量精度大于0.000 5℃,能够满足高精度测量的要求。此外,经测试,该设计方案还可以应用于压力、加速度等非线性传感器的高精度测量,适用范围广,测量精度高、稳定性好、操作简单。 展开更多
关键词 高精度测量 四线制 微小恒流源 自适应测量 数据拟合 非线性传感器
在线阅读 下载PDF
一种新的基于粒子滤波的多模型跟踪算法 被引量:1
3
作者 王来雄 黄士坦 《信号处理》 CSCD 北大核心 2005年第5期470-474,共5页
粒子滤波技术通过非参数化的蒙特卡罗模拟方法实现递推贝叶斯滤波,适用于非线性目标运动模型、非线性传感器测量模型和非高斯噪声的目标跟踪。但需已知目标和量测模型,而实际情况往往难以满足此条件。交互多模型算法(IMM)依据各模型对... 粒子滤波技术通过非参数化的蒙特卡罗模拟方法实现递推贝叶斯滤波,适用于非线性目标运动模型、非线性传感器测量模型和非高斯噪声的目标跟踪。但需已知目标和量测模型,而实际情况往往难以满足此条件。交互多模型算法(IMM)依据各模型对目标前一时刻状态估计的方差,确定各模型在当前时刻状态下存在的概率,利用各模型对目标状态估计的加权和,确定目标的状态。本文采用粒子滤波代替IMM算法中各模型的Kalman滤波,将粒子滤波与IMM的优点相结合。同时,采用UKF(UnscentedKalmanFilter)产生粒子,由于考虑了当前量测,使得粒子的分布更加接近后验概率分布,用较少的粒子就可以逼近目标的真实状态。仿真实验结果表明,本算法可用于标准IMM算法无法实现跟踪的复杂情形,而且使用的粒子数目仅是同类算法的二十分之一。 展开更多
关键词 粒子滤波 多模型 UKF 跟踪 任意轨迹 多模型算法 跟踪算法 目标状态估计 蒙特卡罗模拟方法 非线性传感器
在线阅读 下载PDF
Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks 被引量:4
4
作者 Mousavi Hamidreza Shahbazian Mehdi +1 位作者 Jazayeri-Rad Hooshang Nekounam Aliakbar 《Journal of Central South University》 SCIE EI CAS 2014年第6期2273-2281,共9页
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ... Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly. 展开更多
关键词 fault diagnosis nonlinear principal component analysis auto-associative neural networks
在线阅读 下载PDF
Nonlinear correction of photoelectric displacement sensor based on least square support vector machine 被引量:1
5
作者 郭杰荣 何怡刚 刘长青 《Journal of Central South University》 SCIE EI CAS 2011年第5期1614-1618,共5页
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a... A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor. 展开更多
关键词 least square support vector machine POSITION photoelectric displacement sensor nonlinear correct
在线阅读 下载PDF
State estimation of connected vehicles using a nonlinear ensemble filter
6
作者 刘江 陈华展 +1 位作者 蔡伯根 王剑 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2406-2415,共10页
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d... The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation. 展开更多
关键词 connected vehicles state estimation cooperative positioning nonlinear ensemble filter global navigation satellite system (GNSS) dedicated short range communication (DSRC)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部