期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自优化双模态多通路非深度前庭神经鞘瘤识别模型
1
作者 张睿 张鹏云 高美蓉 《计算机应用》 CSCD 北大核心 2024年第9期2975-2982,共8页
针对不同模态间对应特征极易融合错位、识别模型专家主观经验式调参且计算成本高等问题,提出自优化双模态(“对比增强T1加权”与“高分辨率增强T2加权”)多通路非深度前庭神经鞘瘤识别模型。首先,通过构建前庭神经鞘瘤识别模型进一步挖... 针对不同模态间对应特征极易融合错位、识别模型专家主观经验式调参且计算成本高等问题,提出自优化双模态(“对比增强T1加权”与“高分辨率增强T2加权”)多通路非深度前庭神经鞘瘤识别模型。首先,通过构建前庭神经鞘瘤识别模型进一步挖掘前庭神经鞘瘤病症多模态影像特征及模态间复杂的非线性互补信息;其次,设计基于博弈论全局并行麻雀搜索算法的模型优化策略,实现模型关键超参数的自适应寻优,使模型具有较优的识别效果。实验结果表明,相较于基于深度学习的模型,所提模型在识别准确率提升4.19个百分点的情况下参数量降低了27.9%,验证了它的有效性和自适应性。 展开更多
关键词 前庭神经鞘瘤 多模态神经网络 非深度模型 并行加速 模型自优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部