期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
软件著作权侵权“开源抗辩”解析 被引量:3
1
作者 徐美玲 《知识产权》 CSSCI 北大核心 2024年第6期18-33,共16页
开源是构筑新质生产力的有力支撑,开源软件的有效治理是知识产权强国建设的重点和关键举措之一。在软件著作权侵权纠纷中,开源软件“群智激发→群智汇聚→群智创新”的共创模式促发了“开源抗辩”这一新型侵权抗辩事由。广义的“开源抗... 开源是构筑新质生产力的有力支撑,开源软件的有效治理是知识产权强国建设的重点和关键举措之一。在软件著作权侵权纠纷中,开源软件“群智激发→群智汇聚→群智创新”的共创模式促发了“开源抗辩”这一新型侵权抗辩事由。广义的“开源抗辩”包括潜在侵权方基于涉案软件开源特性提出的抗辩,狭义的“开源抗辩”则是立足于开源许可证的不侵权抗辩。解析“开源抗辩”,应认识到开源软件具备构成合作作品的可能性,同时应基于开源贡献者协议为其著作权权属认定留出意定空间。开源软件与派生软件间“开源抗辩”的判断重点在于是否遵循开源许可证,基于开源软件开发的派生软件与再派生软件间“开源抗辩”的本质则属于非法演绎作品的可版权性争议,应秉持“违约-侵权”二分的基本原则,在认可非法派生软件可版权性的基础上,完善开源许可证条款,并设立软件著作权集体管理组织。 展开更多
关键词 开源软件 合作作品 开源贡献者协议 开源许可证 开源抗辩 非法演 绎作品
在线阅读 下载PDF
Nonlinear inversion for electrical resistivity tomography based on chaotic DE-BP algorithm 被引量:5
2
作者 戴前伟 江沸菠 董莉 《Journal of Central South University》 SCIE EI CAS 2014年第5期2018-2025,共8页
Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was pres... Nonlinear resistivity inversion requires efficient artificial neural network(ANN)model for better inversion results.An evolutionary BP neural network(BPNN)approach based on differential evolution(DE)algorithm was presented,which was able to improve global search ability for resistivity tomography 2-D nonlinear inversion.In the proposed method,Tent equation was applied to obtain automatic parameter settings in DE and the restricted parameter Fcrit was used to enhance the ability of converging to global optimum.An implementation of proposed DE-BPNN was given,the network had one hidden layer with 52 nodes and it was trained on 36 datasets and tested on another 4 synthetic datasets.Two abnormity models were used to verify the feasibility and effectiveness of the proposed method,the results show that the proposed DE-BP algorithm has better performance than BP,conventional DE-BP and other chaotic DE-BP methods in stability and accuracy,and higher imaging quality than least square inversion. 展开更多
关键词 electrical resistivity tomography nonlinear inversion differential evolution back propagation network Tent map
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部