Study on Li/SCl 2-POCl 3 non aqueous system reported,the results of experiment showed that the Li/SCl 2-POCl 3 battery system had higher open voltage(4.10V).When the battery is discharged at current density(10mA·...Study on Li/SCl 2-POCl 3 non aqueous system reported,the results of experiment showed that the Li/SCl 2-POCl 3 battery system had higher open voltage(4.10V).When the battery is discharged at current density(10mA·cm -2 )The load voltage is about 3.2V.The performance of the battery is better than that of Li/SCl 2-POCl 3 battery system.The reduction mechanism of battery system is also studied by cyclic volt ampere measure.展开更多
Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces great...Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.展开更多
A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical curren...A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification.展开更多
文摘Study on Li/SCl 2-POCl 3 non aqueous system reported,the results of experiment showed that the Li/SCl 2-POCl 3 battery system had higher open voltage(4.10V).When the battery is discharged at current density(10mA·cm -2 )The load voltage is about 3.2V.The performance of the battery is better than that of Li/SCl 2-POCl 3 battery system.The reduction mechanism of battery system is also studied by cyclic volt ampere measure.
基金supported by the National Natural Science Foundation of China(52376080 and 52306122)the Anhui Provincial Natural Science Foundation(2308085QE174)+3 种基金the China Postdoctoral Science Foundation(2023TQ0346)the Postdoctoral Fellowship Program of CPSF(GZC20232522)the Fundamental Research Funds for the Central Universities(WK2090000057)the Students’Innovation and Entrepreneurship Foundation of USTC(CY2023C008).
文摘Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways.
文摘A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification.