利用各类算法对非平衡数据进行处理已成为数据挖掘领域研究的热问题。针对非平衡数据的特点,在研究支持向量机的相关理论及K-SVM算法基础上,提出基于惩罚机制的PFKSVM(K-SVMbased on penalty factor)算法,克服K-SVM在最优分类面附近易...利用各类算法对非平衡数据进行处理已成为数据挖掘领域研究的热问题。针对非平衡数据的特点,在研究支持向量机的相关理论及K-SVM算法基础上,提出基于惩罚机制的PFKSVM(K-SVMbased on penalty factor)算法,克服K-SVM在最优分类面附近易发生错分的问题;并提出由重构采样层、基本训练层和综合判定层组成的集成学习模型。利用UCI公共数据集的实验验证了PFKSVM算法及集成模型在处理非平衡数据分类时的优势。展开更多
针对训练数据绝对不平衡问题,提出了一种基于级联结构的集成迁移学习算法。该算法主要包括两部分:迁移学习部分和数据选择部分。在迁移学习阶段,针对Tr Ada Boost算法中辅助领域样本权重不可恢复问题,引入权重恢复因子;在数据选择阶段,...针对训练数据绝对不平衡问题,提出了一种基于级联结构的集成迁移学习算法。该算法主要包括两部分:迁移学习部分和数据选择部分。在迁移学习阶段,针对Tr Ada Boost算法中辅助领域样本权重不可恢复问题,引入权重恢复因子;在数据选择阶段,算法利用级联结构逐步删除辅助领域中噪声样本与冗余样本,在保证目标领域主导作用的同时充分利用辅助领域数据。在真实数据集上的实验结果表明,该算法在数据绝对不平衡的情况下,提升了分类器的综合评价指标与几何平均数,因此该算法可以在一定程度上解决数据绝对不平衡问题。展开更多
文摘利用各类算法对非平衡数据进行处理已成为数据挖掘领域研究的热问题。针对非平衡数据的特点,在研究支持向量机的相关理论及K-SVM算法基础上,提出基于惩罚机制的PFKSVM(K-SVMbased on penalty factor)算法,克服K-SVM在最优分类面附近易发生错分的问题;并提出由重构采样层、基本训练层和综合判定层组成的集成学习模型。利用UCI公共数据集的实验验证了PFKSVM算法及集成模型在处理非平衡数据分类时的优势。
文摘针对训练数据绝对不平衡问题,提出了一种基于级联结构的集成迁移学习算法。该算法主要包括两部分:迁移学习部分和数据选择部分。在迁移学习阶段,针对Tr Ada Boost算法中辅助领域样本权重不可恢复问题,引入权重恢复因子;在数据选择阶段,算法利用级联结构逐步删除辅助领域中噪声样本与冗余样本,在保证目标领域主导作用的同时充分利用辅助领域数据。在真实数据集上的实验结果表明,该算法在数据绝对不平衡的情况下,提升了分类器的综合评价指标与几何平均数,因此该算法可以在一定程度上解决数据绝对不平衡问题。