期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多源非平衡交通检测数据的异常识别方法
被引量:
7
1
作者
邢雪
于德新
+1 位作者
周户星
田秀娟
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019年第9期165-170,共6页
为保证交通检测数据的准确性并服务于实时的交通状态判别和预测,交通大数据采用多种检测源数据协同处理并利用机器学习的方法进行异常识别.异常检测数据的识别主要基于机器学习中AdaBoost方法实现.在算法的训练过程中,为消除单一检测源...
为保证交通检测数据的准确性并服务于实时的交通状态判别和预测,交通大数据采用多种检测源数据协同处理并利用机器学习的方法进行异常识别.异常检测数据的识别主要基于机器学习中AdaBoost方法实现.在算法的训练过程中,为消除单一检测源数据的离群现象,训练数据选取同一路段上多种检测源提供的数据集.在算法的决策过程中,通过代价敏感方法的优势来改进AdaBoost的决策.实验结果表明:基于非均衡特性改进的AdaBoost模型迫使分类器更加关注了待识别的异常样本,增强了AdaBoost决策过程中训练决策树规则的代表性,提高了异常类样本的分类准确率.高速公路实例检测数据集验证了改进算法与相关经典算法的检测准确度、误检率、误警率等指标,其中改进模型与原模型相比,准确率提高了5.547%,误检率减低了6.792%.多种算法的ROC曲线对比表明改进的AdaBoost方法筛选交通检测样本的可靠度更高,可有效调整由非平衡数据导致的分类误差.
展开更多
关键词
ADABOOST
数据
异常识别
多源交通
数据
非平衡检测数据
机器学习
在线阅读
下载PDF
职称材料
题名
多源非平衡交通检测数据的异常识别方法
被引量:
7
1
作者
邢雪
于德新
周户星
田秀娟
机构
吉林化工学院信息与控制工程学院
吉林大学交通学院
吉林省智能交通工程研究中心
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019年第9期165-170,共6页
基金
国家科技支撑计划(2014BAG03B03)
文摘
为保证交通检测数据的准确性并服务于实时的交通状态判别和预测,交通大数据采用多种检测源数据协同处理并利用机器学习的方法进行异常识别.异常检测数据的识别主要基于机器学习中AdaBoost方法实现.在算法的训练过程中,为消除单一检测源数据的离群现象,训练数据选取同一路段上多种检测源提供的数据集.在算法的决策过程中,通过代价敏感方法的优势来改进AdaBoost的决策.实验结果表明:基于非均衡特性改进的AdaBoost模型迫使分类器更加关注了待识别的异常样本,增强了AdaBoost决策过程中训练决策树规则的代表性,提高了异常类样本的分类准确率.高速公路实例检测数据集验证了改进算法与相关经典算法的检测准确度、误检率、误警率等指标,其中改进模型与原模型相比,准确率提高了5.547%,误检率减低了6.792%.多种算法的ROC曲线对比表明改进的AdaBoost方法筛选交通检测样本的可靠度更高,可有效调整由非平衡数据导致的分类误差.
关键词
ADABOOST
数据
异常识别
多源交通
数据
非平衡检测数据
机器学习
Keywords
AdaBoost
abnormal data recognition
multi source traffic data
non equilibrium detection data
machine learning
分类号
U491.1 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多源非平衡交通检测数据的异常识别方法
邢雪
于德新
周户星
田秀娟
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2019
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部