期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于图像非局部自相似性与分类字典学习的超分辨率重建算法 被引量:4
1
作者 王朝晖 陈龙 焦斌亮 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1617-1619,共3页
提出一种新的图像稀疏表示方法,该方法自适应地利用图像的局部与非局部冗余信息,根据图像的非局部自相似性,构造出一个非局部自回归模型,将其作为数值保真项.利用主成分分析方法及高分辨率的样本图像块学习构建紧凑的分类字典,通过限制... 提出一种新的图像稀疏表示方法,该方法自适应地利用图像的局部与非局部冗余信息,根据图像的非局部自相似性,构造出一个非局部自回归模型,将其作为数值保真项.利用主成分分析方法及高分辨率的样本图像块学习构建紧凑的分类字典,通过限制迭代次数用以减少字典训练的计算量,同时字典在稀疏域中能够自适应选取.实验结果表明,与其他几种基于学习的算法比较,本文算法无论是在峰值信噪比、结构相似性上还是主观视觉效果上都有显著提高. 展开更多
关键词 稀疏表示 非局部自相似性 分类字典 局部自回归模型
在线阅读 下载PDF
基于非局部自相似性和低秩矩阵逼近的补全算法 被引量:2
2
作者 张丽 孔旭 孙忠贵 《计算机应用》 CSCD 北大核心 2020年第11期3327-3331,共5页
针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NLLRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后... 针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NLLRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后,针对所得相似矩阵的低秩性,对其进行低秩补全操作(LRMA);最后,对补全结果进行重新组合,以达到恢复原始图像的目的。在灰度图像以及RGB图像上进行重建实验,结果表明:在经典数据集上,NL-LRMA算法要比原LRMA算法在平均峰值信噪比(PSNR)上高出4~7 dB;同时,新算法在视觉效果与PSNR值方面也明显优于迭代重加权核范数(IRNN)、加权核范数(WNNM)、LRMA等传统算法。总之,所提算法对传统算法在自然图像重建方面的不足进行了有效弥补,从而为图像重建提供了一种行之有效的解决方案。 展开更多
关键词 矩阵补全 低秩矩阵逼近 非局部自相似性 图像恢复 块匹配
在线阅读 下载PDF
基于非局部自相似性的谱聚类图像去噪算法 被引量:2
3
作者 柯祖福 易本顺 谢秋莹 《计算机科学》 CSCD 北大核心 2017年第5期299-303,共5页
常见的图像去噪方法只是单独地利用了无噪图像或含噪图像的先验信息,并没有将这两种图像的先验信息有效地结合起来。针对这个问题,提出一种联合无噪图像块的先验信息和含噪图像块的非局部自相似性进行去噪的图像去噪算法。首先,对无噪... 常见的图像去噪方法只是单独地利用了无噪图像或含噪图像的先验信息,并没有将这两种图像的先验信息有效地结合起来。针对这个问题,提出一种联合无噪图像块的先验信息和含噪图像块的非局部自相似性进行去噪的图像去噪算法。首先,对无噪图像块进行谱聚类,通过谱聚类进行学习,图像中的相似块被聚集到同一类,并将学习得到的聚类信息用于含噪图像块的聚类;然后,向量化同一类中的含噪图像块并聚集形成一个矩阵,该矩阵中包含的原始图像数据构成一个低秩矩阵;再通过一个低秩逼近过程估计出相应的原始图像数据;最后,根据逼近得到的原始图像数据重建图像。实验结果表明,相较于已有的自适应正则化的非局部均值去噪算法以及基于主成分分析和局部像素聚类的两级图像去噪算法,提出的算法不仅可以获得较大的峰值信噪比,而且还能较好地保存图像的细节,取得了更好的去噪效果。 展开更多
关键词 图像去噪 谱聚类 非局部自相似性 低秩逼近
在线阅读 下载PDF
基于非局部自相似性的双相机压缩光谱图像重建算法 被引量:1
4
作者 朱骏捷 赵巨峰 +2 位作者 田海军 崔光茫 石振 《光子学报》 EI CAS CSCD 北大核心 2023年第1期27-37,共11页
针对压缩光谱成像的图像重建问题,提出了一种基于非局部稀疏表示与双相机系统的压缩光谱重建方法。首先,利用RGB观测来构建一种三维图像块,使用K均值聚类对图像块进行分类,并以聚类结果来指导目标高光谱图像的光谱块分类,通过主成分分... 针对压缩光谱成像的图像重建问题,提出了一种基于非局部稀疏表示与双相机系统的压缩光谱重建方法。首先,利用RGB观测来构建一种三维图像块,使用K均值聚类对图像块进行分类,并以聚类结果来指导目标高光谱图像的光谱块分类,通过主成分分析获取每个簇的特征用来稀疏表示其他光谱块。然后用构建的三维图像块估计目标光谱图像非局部相似性,并构建目标函数。最后,通过迭代收缩算法与共轭梯度下降法来交替优化目标函数完成重建。仿真和实拍结果表明,所提方法能大幅提升重建质量与精度,在空间和光谱维度上重建误差更小,RGB观测辅助字典学习与相似块估计的方法能有效提升双相机系统的计算效率。 展开更多
关键词 光谱成像 压缩感知 编码孔径 非局部自相似性 稀疏性 双相机
在线阅读 下载PDF
一种自适应稀疏表示和非局部自相似性的图像超分辨率重建算法 被引量:1
5
作者 张福旺 苑会娟 《计算机科学》 CSCD 北大核心 2019年第B06期188-191,共4页
如何充分利用图像自身蕴含的信息进行超分辨率重建仍然是一个开放的问题。文中提出了一种自适应稀疏表示和非局部自相似性的图像超分辨率重建算法。在训练与重建的过程中都采用K-means算法对选取的数据集进行聚类,将相似的图像块聚集在... 如何充分利用图像自身蕴含的信息进行超分辨率重建仍然是一个开放的问题。文中提出了一种自适应稀疏表示和非局部自相似性的图像超分辨率重建算法。在训练与重建的过程中都采用K-means算法对选取的数据集进行聚类,将相似的图像块聚集在一起,然后运用PCA处理自适应地选择字典来进行超分辨率重建。相比于通过固定字典进行图像重建,采用自适应选择字典对图像进行重建将使得到的重建图像效果更加优越。针对自然图像的实验结果表明,利用所提算法重建的超分辨率图像的细节更细腻,伪像更少,边缘更锐利。 展开更多
关键词 稀疏表示 非局部自相似性 超分辨率 迭代收缩算法
在线阅读 下载PDF
基于非局部自相似性的低秩稀疏图像去噪 被引量:11
6
作者 张雯雯 韩裕生 《计算机应用》 CSCD 北大核心 2018年第9期2696-2700,2746,共6页
针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离(MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型(GMM)学习非局部自... 针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离(MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型(GMM)学习非局部自相似性先验;其次,采用稳健主成分追踪(SPCP)方法,将噪声图像矩阵分解为低秩、稀疏及噪声三部分,其中稀疏矩阵包含了稀疏的有用信息;最后,通过最小化全局目标函数实现去噪。实验结果表明,提出的方法在峰值信噪比(PSNR)及结构相似性(SSIM)的结果上比EPLL、NCSR、PCLR等先进去噪算法都有较大的提升,且速度更快,去噪效果及细节保留能力都有更好的表现。 展开更多
关键词 图像去噪 非局部自相似性 低秩稀疏 超分辨率 稳健主成分追踪
在线阅读 下载PDF
基于通道间相关性和非局部自相似性的彩色图像超分辨率算法
7
作者 莫彩网 常侃 +2 位作者 李恒鑫 李明鸿 覃团发 《计算机科学》 CSCD 北大核心 2020年第6期138-143,共6页
现有的大多数单图像超分辨率方法仅用于提高单个通道的分辨率。在处理彩色图像时,由于忽略了通道间的相关性,重建的高分辨率图像容易产生失真。针对这些问题,提出了一种综合考虑通道间相关性及非局部自相似性的彩色图像超分辨算法。首先... 现有的大多数单图像超分辨率方法仅用于提高单个通道的分辨率。在处理彩色图像时,由于忽略了通道间的相关性,重建的高分辨率图像容易产生失真。针对这些问题,提出了一种综合考虑通道间相关性及非局部自相似性的彩色图像超分辨算法。首先,为了充分利用彩色图像的通道间相关性,分别计算通道间残差信号和三通道平均信号的总变分范数;其次,为了进一步提升超分辨率的结果,基于图像内的非局部自相似性更新重建图像;最后,为了求解所建立的优化问题,提出了基于split-Bregman方法的快速迭代算法。将所提算法与一些主流算法进行了比较,在3倍上采样条件下,所提算法在Set5和Set14数据集上平均可获得的峰值信噪比(Peak Signal to Noise Ratio,PSNR)增益分别为0.5 dB及0.36 dB。实验结果证明了联合应用通道间相关性及非局部自相似性能有效提升彩色图像的超分辨重建质量。 展开更多
关键词 彩色图像超分辨率 通道间相关性 非局部自相似性 总变分 split-Bregman
在线阅读 下载PDF
基于非局部自相似性HOG特征与联合稀疏的遥感目标检测方法 被引量:4
8
作者 邓梁 《电子测量技术》 2020年第6期128-133,共6页
遥感图像自动检测飞机由于其在军事和民用航空领域的应用与重要性,成为研究热点,飞机是刚性物体且具有明显几何外观特点,适合应用HOG特征分类,然而HOG特征实现旋转不变困难。针对这一问题,采用了联合稀疏模型,通过构建训练样本原子库,... 遥感图像自动检测飞机由于其在军事和民用航空领域的应用与重要性,成为研究热点,飞机是刚性物体且具有明显几何外观特点,适合应用HOG特征分类,然而HOG特征实现旋转不变困难。针对这一问题,采用了联合稀疏模型,通过构建训练样本原子库,以共享公共稀疏原子的形式进行逼近,然后将逼近最优解作为输出。提出了一种基于非局部自相似性HOG特征与联合稀疏的遥感目标检测方法,首先基于非局部自相似性对HOG特征进行一定的改进,通过强调局部区域的相似,形成非局部自相似性HOG特征,其次将联合稀疏方法作为分类器,最后用非极大值抑制来抑制重叠现象。通过在DOTA数据集上进行的实验来看,该方法与传统HOG特征结合联合稀疏的目标检测算法相比而言精度明显提高了30%以上,召回率也提高了至少18%。 展开更多
关键词 遥感图像 目标检测 联合稀疏 非局部自相似性 HOG
在线阅读 下载PDF
基于非局部自相似性的高光谱异常检测算法 被引量:2
9
作者 汪洋 刘志刚 +1 位作者 鞠荟荟 王艺婷 《电光与控制》 CSCD 北大核心 2020年第5期42-46,共5页
针对目前已有的高光谱异常检测算法大多只利用了高光谱图像的光谱维信息,而没有体现高光谱数据"图谱合一"的优势,导致算法检测性能不佳的问题,提出了一种基于非局部自相似性的高光谱异常检测(NLSSAD)算法。首先建立双立体窗,... 针对目前已有的高光谱异常检测算法大多只利用了高光谱图像的光谱维信息,而没有体现高光谱数据"图谱合一"的优势,导致算法检测性能不佳的问题,提出了一种基于非局部自相似性的高光谱异常检测(NLSSAD)算法。首先建立双立体窗,其中内窗表示待测像素光谱向量的空间-光谱三维结构窗,之后在背景中寻找与内窗最为相似的立体窗,并计算二者之间的距离从而得到待测像素光谱向量的非局部自相似性指数,并得到异常检测结果。实验结果表明,与现有的算法相比,所提算法在检测率和运算速度上均有较好的表现。 展开更多
关键词 高光谱图像 异常检测 非局部自相似性
在线阅读 下载PDF
基于非局部自相似图像块字典学习的伪CT图像预测 被引量:4
10
作者 胡永生 张立毅 《信号处理》 CSCD 北大核心 2017年第3期346-351,共6页
随着PET/CT技术的日益发展,其被广泛应用于现代放射治疗。但在采集数据过程中,对人体放射时间较长,辐射当量较大,增加了患者的痛苦,因此人们希望减少CT扫描中X射线的辐射。为解决这一问题,本文提出基于非局部自相似图像块字典学习的伪C... 随着PET/CT技术的日益发展,其被广泛应用于现代放射治疗。但在采集数据过程中,对人体放射时间较长,辐射当量较大,增加了患者的痛苦,因此人们希望减少CT扫描中X射线的辐射。为解决这一问题,本文提出基于非局部自相似图像块字典学习的伪CT图像预测方法。首先,对训练CT与MRI图像进行图像分块,通过块匹配算法聚类CT图像块,并提取CT与MRI图像块的多尺度特征。其次,通过字典学习,获得MRI图像与CT图像的映射关系矩阵,并对CT图像块进行预测。最后,通过重构算法,从目标MRI图像中得到预测CT图像。仿真实验证明了提出算法相对基于图谱集算法的有效性,以及在现代放射治疗中利用MRI图像替代CT图像的应用前景。 展开更多
关键词 非局部自相似性 字典学习 多尺度特征 伪CT图像
在线阅读 下载PDF
基于改进K-SVD和非局部正则化的图像去噪 被引量:10
11
作者 杨爱萍 田玉针 +1 位作者 何宇清 董翠翠 《计算机工程》 CAS CSCD 北大核心 2015年第5期249-253,共5页
K-奇异值分解(K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改... K-奇异值分解(K-SVD)算法在强噪声下的去噪性能较差。为此,提出一种新的图像去噪算法。使用相关系数匹配准则和噪声原子裁剪方法改进传统K-SVD算法,提高原算法的去噪性能,将非局部正则项融入图像去噪模型,并采用非局部自相似性进一步改善图像的去噪效果。实验结果表明,与传统K-SVD算法相比,该算法在提高同质区域平滑性的同时,能保留更多的纹理、边缘等细节特征。 展开更多
关键词 图像去噪 稀疏表示 奇异值分解 正交匹配追踪算法 字典优化 非局部自相似性
在线阅读 下载PDF
非局部正则化的压缩感知图像重建算法 被引量:7
12
作者 李星秀 韦志辉 +1 位作者 肖亮 费选 《系统工程与电子技术》 EI CSCD 北大核心 2013年第1期196-202,共7页
压缩感知(compressed sensing,CS)图像重建算法是CS图像获取问题的一个研究重点。针对传统基于稀疏性先验的重建算法不能有效重建图像的各种结构特征,为了在测量值数量不变的情况下进一步提高图像的重建质量,在稀疏性先验的基础上,引入... 压缩感知(compressed sensing,CS)图像重建算法是CS图像获取问题的一个研究重点。针对传统基于稀疏性先验的重建算法不能有效重建图像的各种结构特征,为了在测量值数量不变的情况下进一步提高图像的重建质量,在稀疏性先验的基础上,引入局部自回归模型和非局部自相似性作为图像额外的先验信息,建立了非局部正则化的CS图像重建模型,并给出了相应的数值求解算法。此外,对于重建模型中图像的自回归参数,给出一种基于非局部相似点的估计方法。实验结果表明,较之传统的稀疏性正则化重建算法和同类的MARX(model-based adaptive recovery of compressive sensing)算法,所提算法能获得更高的图像重建质量。 展开更多
关键词 压缩感知 图像重建 自回归模型 非局部自相似性
在线阅读 下载PDF
基于色彩约束与非局部稀疏表示的彩色图像超分辨率重建 被引量:1
13
作者 徐志刚 马强 +1 位作者 朱红蕾 张墨逸 《计算机工程》 CAS CSCD 北大核心 2019年第10期272-276,282,共6页
基于稀疏表示模型的彩色图像超分辨率重建方法通常采用基于图像块的稀疏编码过程,易导致稀疏表示不稳定、重建彩色图像存在细节模糊和色彩伪影的问题。为此,提出一种非局部稀疏表示与色彩通道约束相结合的重建算法。将待重建的低分辨率... 基于稀疏表示模型的彩色图像超分辨率重建方法通常采用基于图像块的稀疏编码过程,易导致稀疏表示不稳定、重建彩色图像存在细节模糊和色彩伪影的问题。为此,提出一种非局部稀疏表示与色彩通道约束相结合的重建算法。将待重建的低分辨率彩色图像转换到YCbCr色彩空间,利用非局部稀疏模型对低分辨率彩色图像的亮度信息进行重建,再将重建图像转换回RGB色彩空间,应用色彩通道约束方法去除色彩伪影,从而在保证图像细节信息重建质量的同时提升其色彩伪影的去除能力。实验结果表明,与双三次插值算法、ScSR算法等相比,该算法重建图像的峰值信噪比和结构相似性较高。 展开更多
关键词 稀疏表示 超分辨率 彩色图像 非局部自相似性 色彩通道约束
在线阅读 下载PDF
联合均匀离散曲波变换及非局部张量稀疏正则化的SAR图像相干斑抑制 被引量:1
14
作者 洪樱 肖霞 +1 位作者 张承德 陈高 《湖南师范大学自然科学学报》 CAS 北大核心 2022年第4期159-166,共8页
正则化技术是合成孔径雷达(Synthetic Aperture Radar,SAR)图像相干斑抑制的一种有效工具。在正则化相干斑抑制中,设计有效的正则化项来反映图像的先验信息起着至关重要的作用。本文通过同时刻画SAR图像的局部稀疏性和非局部自相似性,... 正则化技术是合成孔径雷达(Synthetic Aperture Radar,SAR)图像相干斑抑制的一种有效工具。在正则化相干斑抑制中,设计有效的正则化项来反映图像的先验信息起着至关重要的作用。本文通过同时刻画SAR图像的局部稀疏性和非局部自相似性,提出了一种新的基于联合稀疏正则化的SAR图像相干斑抑制模型。该模型包含一个数据保真项和两个正则化项,其中一个正则化项采用离散曲波变换来描述SAR图像的局部平滑性,另一个正则化项采用张量稀疏模型刻画SAR图像的非局部自相似性,图像张量是由具有相似结构的图像块组合,从而在对图像张量进行稀疏表示的过程中能够刻画图像中固有的局部稀疏性和非局部自相似性。进一步,为了求解该模型,提出了一种分离Bregman迭代技术的高效求解算法。实验结果表明,该模型在图像质量的主观视觉评价和客观评价方面均明显优于传统和最新的技术。 展开更多
关键词 SAR图像相干斑抑制 离散曲波变换 非局部自相似性
在线阅读 下载PDF
面向输电线路的压缩感知图像去噪方法 被引量:2
15
作者 王娟 姜玉菡 +4 位作者 陈泽昊 武明虎 丁畅 曾春艳 袁旭亮 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第3期376-383,共8页
传统的基于字典学习的输电线路图像去噪方法,易受冗余字典影响存在重建图像边缘细节恢复不足的问题.为了有效抑制输电线路图像表面存在的高斯噪声,提出一种图像非局部自相似特性与改进K-SVD字典学习算法融合的输电线路图像去噪方法,利... 传统的基于字典学习的输电线路图像去噪方法,易受冗余字典影响存在重建图像边缘细节恢复不足的问题.为了有效抑制输电线路图像表面存在的高斯噪声,提出一种图像非局部自相似特性与改进K-SVD字典学习算法融合的输电线路图像去噪方法,利用图像非局部自相似性作为正则项约束并加权稀疏表达模型,提高去噪图像复原和保留细节的能力.实验选取含有自然图像和输电线路典型缺陷图像进行仿真实验测试.实验结果表明,所提出的算法不仅能够很好的保留图像纹理特征与边缘细节,对高斯噪声也具有良好的鲁棒性. 展开更多
关键词 K-SVD算法 非局部自相似性 高斯噪声 滤波 输电线路缺陷
在线阅读 下载PDF
基于组稀疏残差约束的自适应强噪声图像复原算法
16
作者 高红霞 陈展鸿 +3 位作者 曾润浩 罗澜 陈安 马鸽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第8期11-18,共8页
组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和... 组稀疏学习在图像去噪中显示出巨大的潜力,但现有方法仅从图像块级别考虑含噪图像的非局部自相似性,影响了强噪声图像的重建质量.文中在组稀疏复原模型中引入组稀疏残差和全变分正则化约束,将含噪图像复原问题转化为多尺度图像块匹配和减小组稀疏残差;基于干净图像的组稀疏系数预估和多尺度图像块匹配,提出了自适应图像复原迭代算法,以提升组稀疏学习算法的图像去噪和精细结构复原能力.实验结果表明,文中算法能更好地保留图像的细节纹理,减少过平滑和伪影现象,在强噪声图像复原的主、客观综合评价上优于BM3D、WNNM等标杆去噪算法. 展开更多
关键词 图像去噪 强噪声图像 组稀疏残差 自适应正则化算法 非局部自相似性 多尺度图像块匹配
在线阅读 下载PDF
加强的低秩表示图像去噪算法 被引量:5
17
作者 刘成士 赵志刚 +3 位作者 李强 吕慧显 董晓晨 李金霞 《计算机工程与应用》 CSCD 北大核心 2020年第2期216-225,共10页
由于低秩表示(Low-Rank Representation,LRR)模型中核范数对非零奇异值的估计不足,所以利用参数化的非凸惩罚函数来估计非零奇异值,同时结合全变差(Total Variation,TV)范数保持图像边缘信息和加强区域平滑性的能力,通过对LRR模型中的... 由于低秩表示(Low-Rank Representation,LRR)模型中核范数对非零奇异值的估计不足,所以利用参数化的非凸惩罚函数来估计非零奇异值,同时结合全变差(Total Variation,TV)范数保持图像边缘信息和加强区域平滑性的能力,通过对LRR模型中的系数矩阵施加TV范数约束,提出了一个新的图像去噪算法,并且采取交替最小化方法求解对应模型。利用图像的内在非局部自相似性先验,所提算法能够在有效发现和移除噪声的同时,增强恢复图像的结构和区域平滑性,提高图像的恢复质量。实验结果表明,与其他去噪算法相比,无论是客观评价还是视觉效果,所提算法都实现了具有竞争力的去噪表现,特别是在噪声强度较大时。 展开更多
关键词 图像去噪 低秩表示(LRR) TV范数 凸惩罚函数 非局部自相似性
在线阅读 下载PDF
基于加权Schatten p范数最小化的磁共振图像重构方法研究 被引量:22
18
作者 蒋明峰 陆亮 +2 位作者 吴龙 徐文龙 汪亚明 《电子学报》 EI CAS CSCD 北大核心 2019年第4期784-790,共7页
本文提出了一种基于加权Schatten p范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合Schatten p范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程... 本文提出了一种基于加权Schatten p范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合Schatten p范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程的低秩约束.此外,采用交替方向乘子算法(Alternating Direction Method of Multipliers,ADMM)来求解基于WSNM磁共振图像重构的非凸最小化问题.实验结果表明,相比于最近的磁共振重构算法,基于WSNM的磁共振图像重构方法具有更好的重建效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity,SSIM). 展开更多
关键词 磁共振图像重构 非局部自相似性 加权Schatten p范数最小化
在线阅读 下载PDF
双加权Lp范数RPCA模型及其在椒盐去噪中的应用 被引量:3
19
作者 董惠雯 禹晶 +1 位作者 郭乐宁 肖创柏 《数据采集与处理》 CSCD 北大核心 2021年第1期133-146,共14页
鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权L... 鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权Lp范数的RPCA模型,利用加权S p范数低秩项和加权Lp范数稀疏项分别对RPCA框架中的低秩恢复问题和稀疏恢复问题进行建模,使其更接近秩函数和L0范数最小化问题的解,提升了矩阵秩估计和稀疏估计的准确性。为了验证模型性能,本文利用图像的非局部自相似性,结合相似图像块组的低秩性与椒盐噪声的稀疏性,将双加权Lp范数鲁棒主成分分析模型应用于去除椒盐噪声过程中。定量与定性的实验结果表明,本文模型性能优于其他模型,同时奇异值过收缩分析也表明本文模型能够有效抑制秩成分的过度收缩。 展开更多
关键词 图像去噪 鲁棒主成分分析 低秩 稀疏 非局部自相似性
在线阅读 下载PDF
基于图像块分组的加权编码去噪方法
20
作者 鲁亚琪 武明虎 《现代电子技术》 北大核心 2017年第17期51-55,共5页
针对图像混合噪声去除不足的问题,提出一种分组图像块的加权编码方法。首先,从训练图像中利用非局部相似块提取出分组块;然后,用得到的分组块训练非局部自相似先验模型;最后,集成稀疏先验模型和非局部自相似先验模型到正则化项和编码框... 针对图像混合噪声去除不足的问题,提出一种分组图像块的加权编码方法。首先,从训练图像中利用非局部相似块提取出分组块;然后,用得到的分组块训练非局部自相似先验模型;最后,集成稀疏先验模型和非局部自相似先验模型到正则化项和编码框架中。实验结果表明,提出的方法在重建图像性能上较同类方法有显著提高,获得了更好的图像恢复质量。 展开更多
关键词 加权编码 块分组 非局部自相似性 混合噪声
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部