现有的大多数单图像超分辨率方法仅用于提高单个通道的分辨率。在处理彩色图像时,由于忽略了通道间的相关性,重建的高分辨率图像容易产生失真。针对这些问题,提出了一种综合考虑通道间相关性及非局部自相似性的彩色图像超分辨算法。首先...现有的大多数单图像超分辨率方法仅用于提高单个通道的分辨率。在处理彩色图像时,由于忽略了通道间的相关性,重建的高分辨率图像容易产生失真。针对这些问题,提出了一种综合考虑通道间相关性及非局部自相似性的彩色图像超分辨算法。首先,为了充分利用彩色图像的通道间相关性,分别计算通道间残差信号和三通道平均信号的总变分范数;其次,为了进一步提升超分辨率的结果,基于图像内的非局部自相似性更新重建图像;最后,为了求解所建立的优化问题,提出了基于split-Bregman方法的快速迭代算法。将所提算法与一些主流算法进行了比较,在3倍上采样条件下,所提算法在Set5和Set14数据集上平均可获得的峰值信噪比(Peak Signal to Noise Ratio,PSNR)增益分别为0.5 dB及0.36 dB。实验结果证明了联合应用通道间相关性及非局部自相似性能有效提升彩色图像的超分辨重建质量。展开更多
本文提出了一种基于加权Schatten p范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合Schatten p范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程...本文提出了一种基于加权Schatten p范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合Schatten p范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程的低秩约束.此外,采用交替方向乘子算法(Alternating Direction Method of Multipliers,ADMM)来求解基于WSNM磁共振图像重构的非凸最小化问题.实验结果表明,相比于最近的磁共振重构算法,基于WSNM的磁共振图像重构方法具有更好的重建效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity,SSIM).展开更多
鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权L...鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权Lp范数的RPCA模型,利用加权S p范数低秩项和加权Lp范数稀疏项分别对RPCA框架中的低秩恢复问题和稀疏恢复问题进行建模,使其更接近秩函数和L0范数最小化问题的解,提升了矩阵秩估计和稀疏估计的准确性。为了验证模型性能,本文利用图像的非局部自相似性,结合相似图像块组的低秩性与椒盐噪声的稀疏性,将双加权Lp范数鲁棒主成分分析模型应用于去除椒盐噪声过程中。定量与定性的实验结果表明,本文模型性能优于其他模型,同时奇异值过收缩分析也表明本文模型能够有效抑制秩成分的过度收缩。展开更多
文摘现有的大多数单图像超分辨率方法仅用于提高单个通道的分辨率。在处理彩色图像时,由于忽略了通道间的相关性,重建的高分辨率图像容易产生失真。针对这些问题,提出了一种综合考虑通道间相关性及非局部自相似性的彩色图像超分辨算法。首先,为了充分利用彩色图像的通道间相关性,分别计算通道间残差信号和三通道平均信号的总变分范数;其次,为了进一步提升超分辨率的结果,基于图像内的非局部自相似性更新重建图像;最后,为了求解所建立的优化问题,提出了基于split-Bregman方法的快速迭代算法。将所提算法与一些主流算法进行了比较,在3倍上采样条件下,所提算法在Set5和Set14数据集上平均可获得的峰值信噪比(Peak Signal to Noise Ratio,PSNR)增益分别为0.5 dB及0.36 dB。实验结果证明了联合应用通道间相关性及非局部自相似性能有效提升彩色图像的超分辨重建质量。
文摘本文提出了一种基于加权Schatten p范数最小化(Weighted Schatten p-Norm Minimization,WSNM)的磁共振图像重构算法,该方法利用磁共振图像的非局部自相似性,并结合Schatten p范数和不同秩元素重要性的加权因子,实现磁共振图像重构过程的低秩约束.此外,采用交替方向乘子算法(Alternating Direction Method of Multipliers,ADMM)来求解基于WSNM磁共振图像重构的非凸最小化问题.实验结果表明,相比于最近的磁共振重构算法,基于WSNM的磁共振图像重构方法具有更好的重建效果,可获得更高的峰值信噪比(Peak Signal to Noise Ratio,PSNR)和更好的结构相似性(Structural Similarity,SSIM).