针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynam...针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynamic You Only Look Once Version 8,SLD-YOLOv8),设计非局部自适应Non-local模块和空间通道卷积关联模块,对原YOLOv8网络的瓶颈层Bottleneck CSP进行优化。为有效提取深层空间多尺度表征信息,增加用于小目标检测的160×160检测层和动态检测头,较好地提升暗环境中目标跟踪的边界回归性能,并实时有效地推理出目标特征的相对深度位置信息。实验结果表明,改进后的红外目标检测算法对暗环境下的动态特征检测具有较好的鲁棒性和准确性,其平均精度评估指标mAP_0.5和mAP_0.5:0.95比原模型提高了5.6%和4.5%,证明了新算法对暗环境目标跟踪的有效性。展开更多
文摘针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynamic You Only Look Once Version 8,SLD-YOLOv8),设计非局部自适应Non-local模块和空间通道卷积关联模块,对原YOLOv8网络的瓶颈层Bottleneck CSP进行优化。为有效提取深层空间多尺度表征信息,增加用于小目标检测的160×160检测层和动态检测头,较好地提升暗环境中目标跟踪的边界回归性能,并实时有效地推理出目标特征的相对深度位置信息。实验结果表明,改进后的红外目标检测算法对暗环境下的动态特征检测具有较好的鲁棒性和准确性,其平均精度评估指标mAP_0.5和mAP_0.5:0.95比原模型提高了5.6%和4.5%,证明了新算法对暗环境目标跟踪的有效性。