针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图...针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.展开更多
传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应...传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation,CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。展开更多
文摘针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.
文摘传统基于马尔可夫随机场(MRF)的贝叶斯分割方法由于只考虑邻域像素点的先验影响,无法有效抑制相干斑噪声;边缘区域分割效果欠佳,因为先验模型假定邻域中每个像素对中心像素的影响相同。因而,该文提出一种融合局部和非局部信息的自适应贝叶斯分割方法。针对SAR图像中的相干斑噪声模型,引入基于比率概率的相似性测度,用非局部相似像素块指导当前像素点的分割;并且采用变分系数(Coefficient of Variation,CV)方法获取边缘区域图像模板,在边缘区域自适应地调整定义的结构指数以及搜索窗尺寸,从而改善分割过度平滑与结构保持的矛盾;在实验分析中,利用新方法对部分图像进行了分割实验,并与传统方法作了比较。改进方法的分割结果形状更为准确,不但抑制了相干斑噪声,还有效保持了细节特征,具有显著优势。