期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法 被引量:3
1
作者 牛善洲 刘宏 +5 位作者 刘沛沄 张梦真 李硕 梁礼境 李楠 刘国良 《南方医科大学学报》 CAS CSCD 北大核心 2022年第9期1309-1316,共8页
目的为了减少脑灌注CT检查的辐射剂量,提高低剂量脑灌注CT图像质量,本文提出一种基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法。方法对低剂量脑灌注CT图像进行分块形成一个矩阵,构建低秩稀疏矩阵分解模型进行求解后得到优... 目的为了减少脑灌注CT检查的辐射剂量,提高低剂量脑灌注CT图像质量,本文提出一种基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法。方法对低剂量脑灌注CT图像进行分块形成一个矩阵,构建低秩稀疏矩阵分解模型进行求解后得到优质的低剂量脑灌注CT图像,最后利用恢复后的脑灌注CT序列图像计算出脑血流动力学参数图像。结果在数值实验中,滤波反投影算法的图像的平均结构相似性为0.9438,本文方法恢复结果的平均结构相似性提高到0.9765;滤波反投影算法得到的脑血流量和脑血容量参数图像的结构相似性分别为0.7005和0.6856,本文方法得到的脑血流量和脑血容量参数图像的结构相似性提高到0.7871和0.7972。结论本文方法在低剂量脑灌注CT图像噪声抑制和结构保持方面均有很好的表现,并且可以获取准确的脑血流动力学参数图像。 展开更多
关键词 剂量脑灌注CT 图像恢复 非局部低秩稀疏矩阵分解 脑血流动力学参数
在线阅读 下载PDF
基于非凸低秩张量分解和群稀疏总变分的高光谱混合噪声图像恢复 被引量:1
2
作者 徐光宪 王泽民 马飞 《红外技术》 CSCD 北大核心 2024年第9期1025-1034,共10页
高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高... 高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高光谱混合噪声图像恢复模型;一方面,采用对数张量核范数来逼近HSI的低秩特性,可以利用高光谱数据固有的张量结构,同时减少对较大奇异值的收缩以保留图像更多细节特征;另一方面,采用群稀疏总变分正则化来增强HSI的空间稀疏性和相邻光谱间的相关性。并采用ADMM(Alternating Direction Multiplier Method)算法求解,实验证明该算法易于收敛。在模拟和真实的高光谱图像实验中,与其他方法相比,该方法在去除HSI混合噪声方面具有更好的性能。 展开更多
关键词 高光谱图像 混合噪声 张量分解 稀疏总变分 图像恢复
在线阅读 下载PDF
基于低秩稀疏矩阵分解与定位窗滤波的混响抑制技术
3
作者 马怀逸 朱代柱 《舰船科学技术》 北大核心 2024年第20期153-158,共6页
在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混... 在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混响数据的声学特征将声学检测问题转化为图像分解问题,并通过对比PCA算法处理结果,给出算法的性能比较;与此同时,本文结合目标运动连续性和稀疏杂点随机性的特征差异,提出一种定位窗滤波方法,进一步滤除稀疏杂点,净化主动声呐显示图像,提高主动声呐动目标检测性能。仿真及试验数据处理结果说明,在阵元端信混比-5 dB情况下,算法仍然可以对目标准确定位,滤除稀疏杂点,且在时频域上效果更佳,显著提高了主动声呐动目标检测能力。 展开更多
关键词 强混响 动目标检测 稀疏矩阵分解 定位窗滤波
在线阅读 下载PDF
基于低秩稀疏矩阵分解的非接触心率估计 被引量:1
4
作者 黄继风 白国臣 +1 位作者 熊乃学 魏建国 《图学学报》 CSCD 北大核心 2020年第1期66-72,共7页
心率检测作为一项重要的生理检测指标,在医学健康、刑侦检测、信息安全等方面具有重要应用。计算机视觉领域近期的研究表明,心率信号可以通过摄像头捕捉的视频予以获取。现有的研究方法在理想的实验环境下已取得较好的效果,然而在自然... 心率检测作为一项重要的生理检测指标,在医学健康、刑侦检测、信息安全等方面具有重要应用。计算机视觉领域近期的研究表明,心率信号可以通过摄像头捕捉的视频予以获取。现有的研究方法在理想的实验环境下已取得较好的效果,然而在自然状态面部旋转以及出现各种噪声(阴影、遮挡)时鲁棒性较弱。通过检测人脸的关键点,获得面部区域的感兴趣,避免因面部旋转引入检测误差,在现有模型的基础上提出一种基于低秩稀疏矩阵分解的非接触式心率估计模型,对频域血液体积脉冲(BVP)信号矩阵实现去噪处理,解决使用摄像头非接触式获取心率信号时存在的问题。实验显示,该模型在MAHNOB-HCI数据集上实现了3.25%的误差比均值,优于现有的模型。 展开更多
关键词 稀疏矩阵分解 接触式 心率信号估计 人脸关键点检测 噪声 鲁棒性
在线阅读 下载PDF
基于低秩正则联合稀疏建模的图像去噪算法
5
作者 查志远 袁鑫 +1 位作者 张嘉超 朱策 《电子与信息学报》 北大核心 2025年第2期561-572,共12页
非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀... 非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀疏编码,但只能得到近似的稀疏表示。这种近似的JS模型未能对潜在的图像数据施加低秩性,从而导致图像去噪质量降低。该文提出一种新颖的低秩正则联合稀疏(LRJS)模型,用于求解图像去噪问题。提出的LRJS模型同时利用非局部相似块的LR和JS先验信息,可以增强非局部相似块之间的相关性(即低秩性),从而可以更好地抑制噪声,提升去噪图像的质量。为了提高优化过程的可处理性和鲁棒性,该文设计了一种具有自适应参数调整策略的交替最小化算法来求解目标函数。在两个图像去噪问题(包括高斯噪声去除和泊松噪声去除)上的实验结果表明,提出的LRJS方法在客观度量和视觉感知上均优于许多现有的流行或先进的图像去噪算法,特别是在处理具有高度自相似性的图像数据时表现更为出色。提出的LRJS图像去噪算法的源代码通过以下链接下载:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取码:1234。 展开更多
关键词 图像去噪 泊松去噪 局部稀疏表示 正则联合稀疏 交替最小化算法 自适应参数
在线阅读 下载PDF
基于低秩非局部稀疏表示的图像去噪模型 被引量:5
6
作者 王宏宇 陈冬梅 王慧 《燕山大学学报》 CAS 北大核心 2017年第3期272-277,共6页
在去除加性高斯白噪声的过程中,为克服图像失真,提高图像视觉质量,使图像之间联系更加密切,本文提出了一种基于低秩非局部稀疏表示的去噪算法模型。在该模型中,首先通过PCA方法线训练字典得到稀疏字典集,然后用奇异值分解求解低秩问题,... 在去除加性高斯白噪声的过程中,为克服图像失真,提高图像视觉质量,使图像之间联系更加密切,本文提出了一种基于低秩非局部稀疏表示的去噪算法模型。在该模型中,首先通过PCA方法线训练字典得到稀疏字典集,然后用奇异值分解求解低秩问题,最后用欧拉-拉格朗日方法得到去噪图像的能量泛函,从而重构图像。仿真实验结果表明,提出的新算法不仅能克服图像失真,改善图像视觉质量,还提高了峰值信噪比和图像相似度。 展开更多
关键词 局部相似 稀疏表示 高斯噪声
在线阅读 下载PDF
以非负矩阵分解提取局部特征的SAR目标稀疏表示分类 被引量:2
7
作者 张之光 雷宏 《电讯技术》 北大核心 2016年第5期495-500,共6页
合成孔径雷达(SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法... 合成孔径雷达(SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法。采用Gotcha项目民用车辆目标的实测数据进行了验证,结果显示在不同信噪比条件下该方法的分类正确率均优于广泛采用的由降采样、随机投影、主成分分析提取低维数特征的稀疏表示分类方法,表明了该方法的性能优势。另外,还通过实验对比分析了非负约束的稀疏表示与标准稀疏表示在分类性能上的差别,结果显示非负约束的稀疏表示导致分类正确率下降,故针对分类问题不宜在稀疏表示时进行非负约束。 展开更多
关键词 合成孔径雷达 稀疏表示 目标分类 矩阵分解 局部特征提取
在线阅读 下载PDF
低秩矩阵和结构化稀疏分解的视频背景差分方法 被引量:3
8
作者 刘鑫 张钊强 +2 位作者 姚佳文 郭莉莉 齐春 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第6期23-29,共7页
针对基于矩阵分解的视频前景检测传统算法中忽视前景元素之间相关性会导致检测结果容易受噪声干扰和运动目标检测不完整等问题,提出了一个低秩矩阵和结构化稀疏分解的视频背景差分算法。该算法充分考虑到视频前景区域的结构化分布特征,... 针对基于矩阵分解的视频前景检测传统算法中忽视前景元素之间相关性会导致检测结果容易受噪声干扰和运动目标检测不完整等问题,提出了一个低秩矩阵和结构化稀疏分解的视频背景差分算法。该算法充分考虑到视频前景区域的结构化分布特征,利用结构化稀疏范数对前景进行约束;针对矩阵分解方法中参数选择的难题,采用了一种基于运动显著性判定的两步法来实现动态背景去除和正则化参数的自适应选择,即第一步利用低秩和结构化稀疏分解获得运动候选块,第二步对运动候选块进行显著性分析并利用自适应正则化参数的块稀疏分解进行前景检测。实验结果表明:与现有的基于矩阵分解的前景检测方法相比,该算法能够更加适应复杂多变的视频环境,在I2R测试库中检测出的前景有较高的精确度和召回率。 展开更多
关键词 前景检测 背景差分 矩阵分解 表示 结构化稀疏
在线阅读 下载PDF
基于稀疏与低秩矩阵分解的视频背景建模 被引量:8
9
作者 周密 宋占杰 《计算机应用研究》 CSCD 北大核心 2015年第10期3175-3178,共4页
针对传统背景建模方法的缺点,基于稀疏与低秩矩阵分解理论,在增广拉格朗日乘子法框架下,研究了一种收敛更快的非精确增广拉格朗日乘子法(IALM),直接实现监控视频序列中背景和前景的分离。该算法采用块Lanczos方法和热启动技术实现部分... 针对传统背景建模方法的缺点,基于稀疏与低秩矩阵分解理论,在增广拉格朗日乘子法框架下,研究了一种收敛更快的非精确增广拉格朗日乘子法(IALM),直接实现监控视频序列中背景和前景的分离。该算法采用块Lanczos方法和热启动技术实现部分奇异值分解,使得原有IALM的计算量和迭代次数得以控制。基于实际监控视频的实验结果表明,该算法恢复出的背景矩阵更为低秩,且运行时间下降了几十倍,即能够更加简洁高效地解决背景建模这一实际问题。 展开更多
关键词 背景建模 稀疏矩阵分解 增广拉格朗日乘子法 奇异值分解 块Lanczos 热启动
在线阅读 下载PDF
高光谱协同稀疏与非局部低秩张量变化检测 被引量:2
10
作者 詹天明 宋博 +2 位作者 孙乐 万鸣华 杨国为 《计算机科学与探索》 CSCD 北大核心 2022年第2期448-457,共10页
高光谱图像变化检测可提供地球表面的时间维变化信息,对城乡规划和管理至关重要。因具有较高的光谱分辨率,高光谱图像常被用于检测更精细的变化。针对高光谱变化检测的问题,提出一种基于协同稀疏与非局部低秩张量的高光谱图像变化检测... 高光谱图像变化检测可提供地球表面的时间维变化信息,对城乡规划和管理至关重要。因具有较高的光谱分辨率,高光谱图像常被用于检测更精细的变化。针对高光谱变化检测的问题,提出一种基于协同稀疏与非局部低秩张量的高光谱图像变化检测方法。该方法首先求得前后时间点的高光谱差分图像,再根据差分图像中图像块的非局部分布特点,提取不同的非局部张量簇。然后基于协同稀疏正则化和低秩正则化建立协同稀疏与非局部低秩张量变化检测模型,并采用交替方向乘子法对模型求解得到表示系数。最后根据表示系数求得张量在不同类别中的投影残差,进而根据投影残差最小准则判断该张量块是否发生变化。在Farmland数据集和Urban area in San Francisco City数据集上进行实验,实验结果表明该方法取得较好的高光谱变化检测精度。 展开更多
关键词 高光谱 变化检测 协同稀疏 局部 张量分解
在线阅读 下载PDF
基于低秩分解和改进的非局部平均的SAR图像相干斑抑制 被引量:8
11
作者 沈荻帆 张育 任佳 《信号处理》 CSCD 北大核心 2020年第3期463-470,共8页
为抑制合成孔径雷达(SAR)图像成像过程中形成的相干斑噪声,提出了一种基于低秩分解和改进的非局部平均的SAR图像相干斑去噪方法。首先将SAR图像进行对数处理,将乘性噪声转换为加性噪声;然后利用低秩稀疏分解将对数图像分解成低秩图像部... 为抑制合成孔径雷达(SAR)图像成像过程中形成的相干斑噪声,提出了一种基于低秩分解和改进的非局部平均的SAR图像相干斑去噪方法。首先将SAR图像进行对数处理,将乘性噪声转换为加性噪声;然后利用低秩稀疏分解将对数图像分解成低秩图像部分和稀疏图像部分;接着对含噪严重的稀疏图像部分分析其结构张量,生成非局部平均滤波所需的衰减因子,进行改进的非局部平均滤波去噪;最后再做图像合成,经指数变换得到去噪后的SAR图像。实验结果表明,该方法经视觉评价、边缘保持指数(EPI)和等效视数(ENL)等方面评测,具有较好的抑制噪声和保持边缘及纹理细节的能力。 展开更多
关键词 合成孔径雷达 分解 局部平均 等效视数 边缘保持指数 相干斑抑制
在线阅读 下载PDF
基于非局部自相似性和低秩矩阵逼近的补全算法 被引量:2
12
作者 张丽 孔旭 孙忠贵 《计算机应用》 CSCD 北大核心 2020年第11期3327-3331,共5页
针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NLLRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后... 针对传统矩阵补全算法在图像重建方面的不足,提出了一种基于非局部自相似性和低秩矩阵逼近(NLLRMA)的补全算法。首先,通过相似性度量找到图像中局部块所对应的非局部相似块,并将相应灰度信息进行向量化,从而构建出非局部相似块矩阵;然后,针对所得相似矩阵的低秩性,对其进行低秩补全操作(LRMA);最后,对补全结果进行重新组合,以达到恢复原始图像的目的。在灰度图像以及RGB图像上进行重建实验,结果表明:在经典数据集上,NL-LRMA算法要比原LRMA算法在平均峰值信噪比(PSNR)上高出4~7 dB;同时,新算法在视觉效果与PSNR值方面也明显优于迭代重加权核范数(IRNN)、加权核范数(WNNM)、LRMA等传统算法。总之,所提算法对传统算法在自然图像重建方面的不足进行了有效弥补,从而为图像重建提供了一种行之有效的解决方案。 展开更多
关键词 矩阵补全 矩阵逼近 局部自相似性 图像恢复 块匹配
在线阅读 下载PDF
非控场景下主成分稀疏表示与低秩分解的人脸识别 被引量:12
13
作者 陈斌 东一舟 朱晋宁 《液晶与显示》 CAS CSCD 北大核心 2019年第8期816-824,共9页
针对非受控场景下人脸识别率低的问题,提出一种非控场景下基于主成分稀疏表示与低秩分解的人脸识别算法。首先通过核心基础信息平台收集的数据自构建基础人脸库,然后采集课堂照片并对采样照片通过主成分稀疏表示和低秩分解算法进行分割... 针对非受控场景下人脸识别率低的问题,提出一种非控场景下基于主成分稀疏表示与低秩分解的人脸识别算法。首先通过核心基础信息平台收集的数据自构建基础人脸库,然后采集课堂照片并对采样照片通过主成分稀疏表示和低秩分解算法进行分割,最后以基础人脸库为样本进行匹配识别,并将未进行低秩分解的情况与低秩分解后的结果进行比较。实验结果表明,在非受控场景下通过主成分稀疏表示叠加低秩分解的识别效果对光照变化影响的鲁棒性较强,对遮挡情况受到的影响相对明显,总体识别正确率最高达到92.4%,达到较好非控场景下人脸识别效果。该算法对开放型非受控场景下的人脸识别及由此衍生出的表情识别、行为识别等研究都有积极助益。 展开更多
关键词 控场景 主成分 稀疏表示 分解 人脸识别
在线阅读 下载PDF
基于非局部自相似性的低秩稀疏图像去噪 被引量:11
14
作者 张雯雯 韩裕生 《计算机应用》 CSCD 北大核心 2018年第9期2696-2700,2746,共6页
针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离(MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型(GMM)学习非局部自... 针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离(MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型(GMM)学习非局部自相似性先验;其次,采用稳健主成分追踪(SPCP)方法,将噪声图像矩阵分解为低秩、稀疏及噪声三部分,其中稀疏矩阵包含了稀疏的有用信息;最后,通过最小化全局目标函数实现去噪。实验结果表明,提出的方法在峰值信噪比(PSNR)及结构相似性(SSIM)的结果上比EPLL、NCSR、PCLR等先进去噪算法都有较大的提升,且速度更快,去噪效果及细节保留能力都有更好的表现。 展开更多
关键词 图像去噪 局部自相似性 稀疏 超分辨率 稳健主成分追踪
在线阅读 下载PDF
自适应图正则化的低秩非负矩阵分解算法 被引量:2
15
作者 余沁茹 卢桂馥 李华 《智能系统学报》 CSCD 北大核心 2022年第2期325-332,共8页
图正则化(nonnegative matrix factorization,NMF)算法(graph regularization nonnegative matrix factorization,GNMF)仍存在一些不足之处:GNMF算法并没有考虑数据的低秩结构;在GNMF算法中,其拉普拉斯图是使用K近邻(K nearest neighbor... 图正则化(nonnegative matrix factorization,NMF)算法(graph regularization nonnegative matrix factorization,GNMF)仍存在一些不足之处:GNMF算法并没有考虑数据的低秩结构;在GNMF算法中,其拉普拉斯图是使用K近邻(K nearest neighbor,KNN)方法预先定义的,而KNN方法无法总是获得最优图解,从而使得GNMF算法的性能不能达到最优。为此,本文提出了一种自适应图正则化的非负矩阵分解算法(nonnegative low-rank matrix factorization with adaptive graph neighbors,NLMFAN)。一方面,通过引入低秩约束,使得NLMFAN可以获得原始数据集的有效低秩结构;另一方面,设计了一种通过自适应求解相似度矩阵的方法来进行图的构建,即图的构造和矩阵分解的结果被融入一个整体的框架中,使得图中节点的相似性是自动从数据中学习得到的。此外,本文还给出了一种求解NLMFAN的有效算法。在多种数据集上的实验验证了本文所提出的算法的有效性。 展开更多
关键词 聚类 特征提取 降维 流形学习 矩阵分解 约束 图正则化 自适应聚类
在线阅读 下载PDF
基于非局部双边随机投影低秩逼近图像去噪算法 被引量:7
16
作者 罗亮 冯象初 +1 位作者 张选德 李小平 《电子与信息学报》 EI CSCD 北大核心 2013年第1期99-105,共7页
该文提出一种基于非局部双边随机投影的低秩逼近图像去噪新方法。首先,对每个图像块通过非局部搜索寻找相似匹配块簇,然后对相似匹配块簇进行双边随机投影,用投影后的低秩结构恢复原图像。实验结果表明,所提方法比奇异值分解方法有较低... 该文提出一种基于非局部双边随机投影的低秩逼近图像去噪新方法。首先,对每个图像块通过非局部搜索寻找相似匹配块簇,然后对相似匹配块簇进行双边随机投影,用投影后的低秩结构恢复原图像。实验结果表明,所提方法比奇异值分解方法有较低的计算复杂度,比单边随机投影方法有较小的重构误差。特别是和3维块匹配方法相比,所提方法能保持相近的信噪比和较好的视觉质量。 展开更多
关键词 图像去噪 局部方法 随机投影 逼近 奇异值分解
在线阅读 下载PDF
基于隐式低秩非负矩阵分解模型的人脸识别方法
17
作者 杨国亮 龚曼 《传感器与微系统》 CSCD 2020年第3期57-60,63,共5页
针对非负矩阵分解(NMF)具有一定的稀疏性,但不足以进行有效的分类的问题,为了获得特征提取过程中缺失的高维数据结构信息和隐藏信息,提高非负矩阵分解的低秩性与稀疏性,提出一种基于隐式低秩表示的非负矩阵分解模型(NLatMF)。该模型将... 针对非负矩阵分解(NMF)具有一定的稀疏性,但不足以进行有效的分类的问题,为了获得特征提取过程中缺失的高维数据结构信息和隐藏信息,提高非负矩阵分解的低秩性与稀疏性,提出一种基于隐式低秩表示的非负矩阵分解模型(NLatMF)。该模型将隐式低秩算法提取的原始数据非负的低秩部分和隐式部分应用于非负矩阵分解,更有效地解决了分类问题。将该模型用于图像分类,通过在Yaleface等人脸数据库上仿真,结果表明:新模型有效提高了识别率。 展开更多
关键词 矩阵分解 特征提取 隐式表示 稀疏 图像分类
在线阅读 下载PDF
采用稀疏和平滑双约束的增量正交映射非负矩阵分解目标跟踪 被引量:1
18
作者 王华彬 田猛 +2 位作者 周健 施汉琴 陶亮 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第9期1658-1666,共9页
针对目标跟踪在遮挡和尺度变化等复杂背景下跟踪性能下降问题,联合稀疏约束、时间平滑约束以及增量投影非负矩阵分解,提出一种在线目标跟踪算法.首先利用非负矩阵分解学习一个基于部分表示的子空间,在此基础上添加稀疏约束提高处理遮挡... 针对目标跟踪在遮挡和尺度变化等复杂背景下跟踪性能下降问题,联合稀疏约束、时间平滑约束以及增量投影非负矩阵分解,提出一种在线目标跟踪算法.首先利用非负矩阵分解学习一个基于部分表示的子空间,在此基础上添加稀疏约束提高处理遮挡能力,添加时间平滑约束提高算法的稳定性;然后用增量方式完成子空间的在线更新,减少算法计算量、提高外观模型更新效率;最后在粒子滤波框架下,以重构误差为基础改进了观测似然函数,将具有最大后验概率的候选目标作为目标在当前帧的图像区域.实验结果表明,在各种含有遮挡和尺度变化的视频中,该算法可以更稳定地跟踪目标. 展开更多
关键词 矩阵分解 稀疏约束 平滑约束 局部特征 粒子滤波
在线阅读 下载PDF
基于增广Huber正则化稀疏低秩矩阵的旋转机械微弱故障诊断 被引量:5
19
作者 李庆 胡炜 +1 位作者 彭二飞 LIANG Steven Y 《中国电机工程学报》 EI CSCD 北大核心 2019年第15期4579-4588,共10页
在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征... 在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征提取方法,以大型减速机齿轮箱复合微弱诊断为例。该方法借助于非凸罚正则化稀疏低秩矩阵的思想,通过引入增广Huber罚函数代替传统最小化L1-norm融合套索算法,建立正则化目标成本函数,推导所建立模型的严格凸性,同时讨论模型严格凸性前提下的模型参数最优取值问题,并利用前向–后向算法对所建立模型进行求解。仿真算例与大型减速机齿轮箱微弱故障诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的复合微弱故障特征,而且改善传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的稀疏系数低估与故障频率丢失问题,以及变分模态分解与快速谱峭度图特征提取算法产生的能量衰减与故障频率丢失问题。 展开更多
关键词 复合微弱故障 增广Huber函数 凸罚正则化 稀疏矩阵 齿轮箱
在线阅读 下载PDF
低秩稀疏矩阵优化问题的模型与算法 被引量:3
20
作者 潘少华 文再文 《运筹学学报》 北大核心 2020年第3期1-26,共26页
低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵... 低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵优化问题、以及低秩张量优化问题四个方面来综述其研究现状;其中,对稀疏矩阵优化问题,主要以稀疏逆协方差矩阵估计和列稀疏矩阵优化问题为典例进行概述,而对低秩矩阵优化问题,主要从凸松弛和因子分解法两个角度来概述秩约束优化和秩(正则)极小化问题的模型与算法研究。最后,总结了低秩稀疏矩阵优化研究中的一些关键与挑战问题,并提出了一些可以探讨的问题。 展开更多
关键词 稀疏矩阵优化 凸松弛模型 因子分解模型 精确恢复条件 收敛性
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部