期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于全卷积神经网络的非对称并行语义分割模型 被引量:12
1
作者 李宝奇 贺昱曜 +1 位作者 何灵蛟 强伟 《电子学报》 EI CAS CSCD 北大核心 2019年第5期1058-1064,共7页
针对RGB图像具有丰富的色彩细节特征,红外图像对目标轮廓、尺寸、边界等外形特征有较高敏感度的特点,提出了一种非对称并行语义分割模型APFCN(Asymmetric Parallelism Fully Convolutional Networks).APFCN上路设计了一个卷积核尺寸非... 针对RGB图像具有丰富的色彩细节特征,红外图像对目标轮廓、尺寸、边界等外形特征有较高敏感度的特点,提出了一种非对称并行语义分割模型APFCN(Asymmetric Parallelism Fully Convolutional Networks).APFCN上路设计了一个卷积核尺寸非统一的五层空洞卷积网络来提取红外图像目标高层轮廓特征;下路沿用卷积加池化网络提取RGB图像三个尺度上的细节特征;后端将红外图像高层特征与RGB图像三个尺度的细节特征进行融合,并将4倍上采样后的融合特征作为语义分割输出.结果表明,APFCN在像素精度和交并比等方面均优于FCN(输入为RGB图像或红外图像),适用于背景一致下地面目标的语义分割任务. 展开更多
关键词 语义分割 卷积神经网络 非对称并行全卷积神经网络 空洞卷积 空洞率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部