期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于增量非负矩阵分解的合成孔径雷达目标识别 被引量:3
1
作者 张慧 党思航 崔宗勇 《科学技术与工程》 北大核心 2017年第12期205-210,共6页
随着合成孔径雷达(SAR)数据的快速增长,传统的目标识别方法由于不具备增量学习的能力,导致计算代价逐渐增加,从而越来越无法满足实时信息处理的需求。在识别过程中关键的特征提取环节,非负矩阵分解能够获取目标基于部分的特征表示,已被... 随着合成孔径雷达(SAR)数据的快速增长,传统的目标识别方法由于不具备增量学习的能力,导致计算代价逐渐增加,从而越来越无法满足实时信息处理的需求。在识别过程中关键的特征提取环节,非负矩阵分解能够获取目标基于部分的特征表示,已被成功应用于SAR目标识别领域。然而面对新增样本,采用非负矩阵分解描述SAR目标特征的过程中,会产生重复训练,从而大大降低了识别效率。提出基于增量非负矩阵分解的SAR目标识别方法,实现了基于非负矩阵分解的SAR目标特征表示的增量学习能力,从而大大降低计算代价。针对MSATR数据集的仿真试验结果表明,在保证识别率的基础上,提出的方法能够降低样本训练时间74.7%以上。因此该方法能够适应数据增加的现实需求,并能够为建立具有自主学习能力的SAR目标识别系统提供有效的技术支撑。 展开更多
关键词 增量负矩阵分解 合成孔径雷达 目标识别 增量学习
在线阅读 下载PDF
基于SAR仿真图像的地面车辆非同源目标识别 被引量:8
2
作者 胡利平 董纯柱 +3 位作者 刘锦帆 殷红成 王超 宁超 《系统工程与电子技术》 EI CSCD 北大核心 2021年第12期3518-3525,共8页
充分的合成孔径雷达(synthetic aperture radar,SAR)模板数据是目标识别算法(尤其是基于深度学习的智能目标识别算法)获得优异识别性能的关键,基于实际测量获取充分SAR数据是不现实的,基于电磁散射建模的SAR仿真成为当前获取充分样本的... 充分的合成孔径雷达(synthetic aperture radar,SAR)模板数据是目标识别算法(尤其是基于深度学习的智能目标识别算法)获得优异识别性能的关键,基于实际测量获取充分SAR数据是不现实的,基于电磁散射建模的SAR仿真成为当前获取充分样本的一种有效途径。SAR仿真图像与实测图像为非同源数据,由于SAR仿真的目标几何模型与实物之间差异、SAR仿真过程中的传感器模型与实际传感器性能之间差异、实物所处的背景环境与SAR仿真的环境之间差异、电磁建模方法本身误差等因素导致SAR仿真图像与实测图像存在差异,会影响识别性能。针对这一问题,首先采用一种基于高频渐近技术和离散射线追踪技术的SAR仿真方法获取地面车辆目标的SAR仿真图像,再利用卷积神经网络方法、线性/非线性特征变换方法实现对MSTAR实测数据的非同源SAR目标识别性能对比分析。实验结果表明,直接使用SAR仿真数据无法实现对实测SAR数据有效识别,而线性/非线性特征变换可以改善非同源SAR目标识别性能,一定程度上缓解由于SAR仿真数据与实测数据存在差异导致的识别性能差的问题。 展开更多
关键词 合成孔径雷达仿真 特征变换 非同源合成孔径雷达目标识别
在线阅读 下载PDF
基于非负矩阵分解的SAR图像目标识别 被引量:25
3
作者 龙泓琳 皮亦鸣 曹宗杰 《电子学报》 EI CAS CSCD 北大核心 2010年第6期1425-1429,共5页
特征提取是合成孔径雷达自动目标识别的关键技术,同时也是难点问题之一.本文提出了一种基于非负矩阵分解算法与Fisher线性判别方法的合成孔径雷达图像目标识别的方法,通过基于基向量非负加权组合的形式构建SAR目标图像,能充分利用目标... 特征提取是合成孔径雷达自动目标识别的关键技术,同时也是难点问题之一.本文提出了一种基于非负矩阵分解算法与Fisher线性判别方法的合成孔径雷达图像目标识别的方法,通过基于基向量非负加权组合的形式构建SAR目标图像,能充分利用目标的局部空间结构信息提取目标特征信息实现目标识别.首先将水平集分割预处理后的SAR目标图像样本构成初始矩阵,然后利用非负矩阵分解后得到的权向量作为目标图像的特征向量,再通过依据Fisher线性判别构成的分类器,实现对MSTAR数据中3类目标的识别,并与目前已有的几种典型方案进行对比.试验结果表明该方法是可行且有效的,并能够明显提高对目标识别的稳定性和正确率. 展开更多
关键词 合成孔径雷达 目标识别 负矩阵分解 FISHER线性判别
在线阅读 下载PDF
基于二维非参数特征分析的SAR图像目标识别 被引量:3
4
作者 刘振 姜晖 徐海峰 《电讯技术》 北大核心 2012年第12期1940-1945,共6页
在分析传统Fisher线性鉴别分析局限性的基础上,由图像的行信息和列信息提出了两种形式的二维非参数特征分析(2DNFA)的特征提取方法,并应用于SAR图像目标的识别。直接在SAR图像矩阵上使用非参数特征分析提取特征不仅能充分发挥非参数特... 在分析传统Fisher线性鉴别分析局限性的基础上,由图像的行信息和列信息提出了两种形式的二维非参数特征分析(2DNFA)的特征提取方法,并应用于SAR图像目标的识别。直接在SAR图像矩阵上使用非参数特征分析提取特征不仅能充分发挥非参数特征分析的性能而且保留了图像矩阵的结构信息,大大降低了散度矩阵的维数,减小了运算量。使用美国MSTAR计划录取的数据对算法进行了仿真验证,实验结果显示两种形式的二维非参数特征分析在较低特征维数下的识别率均可以达到98%以上,表明所提方法的有效性和正确性。 展开更多
关键词 合成孔径雷达 目标识别 FISHER线性鉴别分析 参数特征分析
在线阅读 下载PDF
基于L_(1/2)范数约束增量非负矩阵分解的SAR目标识别
5
作者 张慧 党思航 崔宗勇 《计算机应用研究》 CSCD 北大核心 2018年第2期628-631,共4页
增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基... 增量非负矩阵分解(INMF)随目标样本增加逐渐更新分解模型,能够有效解决NMF算法的计算代价随样本增加而成倍增长的问题。然而INMF在使NMF具备增量学习能力的同时,并未考虑NMF分解矩阵的稀疏性对识别性能的提升作用。针对上述问题,提出基于L1/2范数约束的增量非负矩阵分解(L1/2-INMF)算法,并应用于SAR目标识别。L1/2-INMF采用L1/2范数实时约束增量过程中的NMF分解矩阵,能够在不增加计算复杂度的同时,提升识别性能。针对MSTAR数据集的仿真实验结果表明,提出的L1/2-INMF能够解决传统非负矩阵分解方法计算代价随样本增加而增加的问题。 展开更多
关键词 增量负矩阵分解 合成孔径雷达 目标识别 L1/2范数约束
在线阅读 下载PDF
基于多角度合成SAR图像的目标识别性能分析 被引量:6
6
作者 邹浩 林赟 洪文 《中国科学院大学学报(中英文)》 CSCD 北大核心 2019年第2期226-234,共9页
合成孔径雷达(synthetic aperture radar,SAR)在合成孔径累积时间内仅在小范围方位角获取目标的后向散射特性,导致SAR图像对观测方位向的变化极其敏感。通过图像非相干合成方法将不同方位向上的多幅同目标SAR图像合成单幅特征更明显的SA... 合成孔径雷达(synthetic aperture radar,SAR)在合成孔径累积时间内仅在小范围方位角获取目标的后向散射特性,导致SAR图像对观测方位向的变化极其敏感。通过图像非相干合成方法将不同方位向上的多幅同目标SAR图像合成单幅特征更明显的SAR图像,通过二维主成分分析方法提取特征和k-近邻分类方法实现目标识别。在两组不同数据集上对识别性能进行分析。实验结果表明,多角度SAR的识别率比单一角度更高。多角度SAR对观测平台俯视角的变化具有较强的鲁棒性。 展开更多
关键词 目标识别 多角度 合成孔径雷达 相干合成 性能分析
在线阅读 下载PDF
基于差准则的二维非参数特征分析的SAR目标识别 被引量:1
7
作者 胡利平 李胜 殷红成 《系统工程与电子技术》 EI CSCD 北大核心 2015年第10期2250-2254,共5页
提出一种基于差准则的二维非参数特征分析(2-dimensional nonparametric feature analysis based on difference criterion,2DDNFA)的图像特征提取方法,它结合了二维线性判决分析(2-dimensional linear discriminant analysis,2DLDA)、... 提出一种基于差准则的二维非参数特征分析(2-dimensional nonparametric feature analysis based on difference criterion,2DDNFA)的图像特征提取方法,它结合了二维线性判决分析(2-dimensional linear discriminant analysis,2DLDA)、最大散度差(maximum scatter difference,MSD)、非参数判决分析(nonparametric feature analysis,NFA)3种方法的思想。首先利用二维图像样本的近邻样本构造类内、类间散布矩阵,再基于差准则计算投影矩阵,最后将二维图像向投影矩阵投影得到特征矩阵。基于实测合成孔径雷达(synthetic aperture radar,SAR)数据的实验结果表明,方法的性能优于基于Fisher准则的2DLDA、二维非参数特征分析(2-dimension nonparametric feature analysis,2DNFA)方法、也优于基于差准则的二维最大散度差(2-dimensional maximum scatter difference,2DMSD)鉴别分析方法。 展开更多
关键词 合成孔径雷达 目标识别 参数特征分析 差准则
在线阅读 下载PDF
基于B(2D)~2PGNMF的ISAR像目标识别 被引量:2
8
作者 王芳 盛卫星 +1 位作者 马晓峰 王昊 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期863-868,901,共7页
为了更好地利用逆合成孔径雷达(ISAR)像目标的局部空间结构信息和类别信息实现目标识别,该文提出了一种基于分块双向二维投影梯度非负矩阵分解(B(2D)2PGNMF)的ISAR像目标识别方法。采用基向量非负加权组合的形式构建目标像。将B(2D)2PG... 为了更好地利用逆合成孔径雷达(ISAR)像目标的局部空间结构信息和类别信息实现目标识别,该文提出了一种基于分块双向二维投影梯度非负矩阵分解(B(2D)2PGNMF)的ISAR像目标识别方法。采用基向量非负加权组合的形式构建目标像。将B(2D)2PGNMF分解得到的权向量作为特征,通过最近邻分类器完成五类飞机目标的识别。仿真结果表明:在相同的压缩率或相同的基矩阵维数下,二维投影梯度非负矩阵分解(PGNMF)算法比一维PGNMF算法具有更高的识别精度,分块投影梯度非负矩阵分解(BPGNMF)算法的识别结果优于PGNMF算法,B(2D)2PGNMF算法的识别结果优于双向二维投影梯度非负矩阵分解((2D)2PGNMF)算法。在相同的基矩阵维数下,二维PGNMF算法的压缩率高于一维PGNMF算法,BPGNMF算法所需的运行时间最长,(2D)2PGNMF算法的运行时间最短。该文方法在不影响运算效率的同时能获得较好的识别结果。 展开更多
关键词 合成孔径雷达 分块双向二维投影梯度负矩阵分解 目标识别
在线阅读 下载PDF
二维非参数最大散度差鉴别分析的SAR图像识别 被引量:2
9
作者 姜晖 刘振 王鹏 《火力与指挥控制》 CSCD 北大核心 2014年第5期101-106,共6页
为增强线性鉴别分析(LDA)在图像识别中所提取特征的可鉴别性及避免小样本问题,提出了二维非参数最大散度差鉴别分析(2DNMSD)的图像特征提取方法。首先根据非参数特征分析的准则直接在二维图像矩阵上构造散布矩阵,然后基于最大散度差鉴... 为增强线性鉴别分析(LDA)在图像识别中所提取特征的可鉴别性及避免小样本问题,提出了二维非参数最大散度差鉴别分析(2DNMSD)的图像特征提取方法。首先根据非参数特征分析的准则直接在二维图像矩阵上构造散布矩阵,然后基于最大散度差鉴别分析准则求取投影矢量。基于MSTAR计划录取的数据的仿真实验结果表明:即使方位角信息未知并且使用简单的最近邻分类器,该方法所提取特征在较低特征维数下的识别率也可以达到98%以上,表明了方法的有效性和正确性。 展开更多
关键词 FISHER线性鉴别分析 最大散度差鉴别分析 参数特征分析 合成孔径雷达 目标识别
在线阅读 下载PDF
两向二维NFA及其在SAR目标识别中的应用
10
作者 刘振 姜晖 王粒宾 《火力与指挥控制》 CSCD 北大核心 2014年第2期151-155,共5页
通过对传统线性鉴别分析局限性的分析,提出一种基于两向二维非参数特征分析((2D)2NFA)的SAR图像目标识别方法,该方法有效克服了线性鉴别分析的固有缺陷并且运算量也大大降低。首先,定义一种图像矩阵的近邻样本选取方法,继而利用k近邻样... 通过对传统线性鉴别分析局限性的分析,提出一种基于两向二维非参数特征分析((2D)2NFA)的SAR图像目标识别方法,该方法有效克服了线性鉴别分析的固有缺陷并且运算量也大大降低。首先,定义一种图像矩阵的近邻样本选取方法,继而利用k近邻样本构造(2D)2NFA的类间散度矩阵和类内散度矩阵,然后使用(2D)2NFA提取样本的特征,最后在特征空间中使用简单的最近邻分类器进行待识别测试目标的分类识别。用美国运动和静止目标获取与识别(MSTAR)计划录取的SAR图像数据进行了仿真实验,实验结果表明(2D)2NFA增强了提取特征的可鉴别性,能够获得更高的识别率,而且减小了特征维数。 展开更多
关键词 合成孔径雷达 目标识别 线性鉴别分析 参数特征分析
在线阅读 下载PDF
结合多源特征与高斯过程模型的SAR图像目标识别 被引量:1
11
作者 辛海燕 童有为 《电讯技术》 北大核心 2021年第4期454-460,共7页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出结合多源特征和高斯过程模型的方法。分别利用主成分分析(Principal Component Analysis,PCA)、非负矩阵分解(Non-negative Matrix Factorization,NMF)以及单演信... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出结合多源特征和高斯过程模型的方法。分别利用主成分分析(Principal Component Analysis,PCA)、非负矩阵分解(Non-negative Matrix Factorization,NMF)以及单演信号提取SAR图像的特征矢量,并将它们串接为单一矢量。三类特征从不同角度描述SAR图像目标特性,从而为目标识别提供更为有效的信息。决策分类过程采用高斯过程模型进行多元分类,基于融合特征矢量获得概率意义上的最佳决策。实验中,采用MSTAR数据集设置3类目标、10类目标、型号差异以及俯仰角差异识别问题,结果验证了提出方法的优越性能。 展开更多
关键词 合成孔径雷达(SAR) 目标识别 主成分分析(PCA) 负矩阵分解(NMF) 单演信号 高斯过程模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部