期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非可积(3+1)维KdV型方程的一类多孤子解 被引量:7
1
作者 郭冠平 张解放 《西安石油学院学报(自然科学版)》 CAS 2002年第3期82-84,共3页
根据 Painlevé奇异分析或直接双线性方法或齐次平衡方法可得到一个非线性变换 ,能使复杂的 ( 3+ 1 )维 Kd V型方程转化为简单的线性偏微分方程和双线性偏微分方程 .然后从这些简单的线性偏微分方程和双线性偏微分方程出发 ,通过设... 根据 Painlevé奇异分析或直接双线性方法或齐次平衡方法可得到一个非线性变换 ,能使复杂的 ( 3+ 1 )维 Kd V型方程转化为简单的线性偏微分方程和双线性偏微分方程 .然后从这些简单的线性偏微分方程和双线性偏微分方程出发 ,通过设定形式解构造出 ( 3+ 1 )维 Kd V型方程的一类多孤子解 .由于某些参量选择的任意性 ,使得 ( 3+ 1 )维 Kd 展开更多
关键词 非可(3+1)kdv方程 多孤子解 kdv方程 线性变换 非可方程
在线阅读 下载PDF
一类Kadomtsev-Petviashvili和(3+1)维KdV型方程的新行波解
2
作者 林府标 张千宏 《东北师大学报(自然科学版)》 CAS 北大核心 2021年第2期25-29,共5页
利用试探函数法找到了Riccati方程8种类型的显式新精确解.采用Riccati方程的新精确解构造了exp(-ψ(ξ))展式法.最后运用Riccati方程的新精确解结合广义Tanh函数法和exp(-ψ(ξ))展式法获得了(2+1)和(3+1)维Kadomtsev-Petviashvili及(3... 利用试探函数法找到了Riccati方程8种类型的显式新精确解.采用Riccati方程的新精确解构造了exp(-ψ(ξ))展式法.最后运用Riccati方程的新精确解结合广义Tanh函数法和exp(-ψ(ξ))展式法获得了(2+1)和(3+1)维Kadomtsev-Petviashvili及(3+1)维KdV型方程的新行波解. 展开更多
关键词 Riccati方程 exp(-ψ(ξ))展式法 KADOMTSEV-PETVIASHVILI方程 (3+1)kdv方程 行波解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部