期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于模糊核加权C-均值聚类的高光谱图像分类 被引量:19
1
作者 赵春晖 齐滨 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第9期2016-2021,共6页
高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类... 高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类结果。另外,模糊C-均值聚类算法在计算聚类中心时,仅使用了各样本对聚类中心的隶属度,忽略了样本之间固有存在的空间分布特征。为此提出了模糊核加权C-均值聚类算法,在计算模糊核聚类中心时,根据样本的空间分布特征,为每个样本分配不同的权值,使得每个核聚类中心随着样本的不同而各有不同。标准数据和实际高光谱数据的实验结果均表明,相比较传统模糊C-均值均聚类算法,模糊核加权C-均值聚类算法在总体分类精度上有较大的提高。 展开更多
关键词 聚类分析 模糊核C-均值聚类 参数加权特征提取 样本空间分布
在线阅读 下载PDF
自适应NWFE-KFCM算法在旋转机械故障辨识中的应用 被引量:3
2
作者 赵荣珍 孙业北 邓林峰 《计算机集成制造系统》 EI CSCD 北大核心 2018年第4期820-828,共9页
为提高故障辨识准确率,提出一种专用于故障数据集自适应确定聚类类别数目的非参数加权特征提取(NWFE)和模糊核C-均值(KFCM)相结合的算法。以一个双跨度转子实验台作为实验研究对象,在将核函数与模糊C-均值方法相结合的基础上,采用NWFE... 为提高故障辨识准确率,提出一种专用于故障数据集自适应确定聚类类别数目的非参数加权特征提取(NWFE)和模糊核C-均值(KFCM)相结合的算法。以一个双跨度转子实验台作为实验研究对象,在将核函数与模糊C-均值方法相结合的基础上,采用NWFE算法中加权聚类中心的计算实现了为每个样本分配不同的权值,并引入聚类评价指标PBMF自适应地确定出最佳聚类数目。用Iris经典数据集对算法进行验证表明,所提算法能够克服传统算法中存在的同等对待不同样本特征和完全靠先验知识确定聚类数目的弊端。将该算法应用到转子实验台模拟故障的特征数据集中,进一步表明了其在转子故障数据集聚类分析中的有效性和实用性。 展开更多
关键词 非参数特征加权 模糊核聚类 自适应聚类数 旋转机械 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部