期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于集合论估计的电网状态辨识(三)基于优化模型的求解方法 被引量:4
1
作者 王彬 王治华 +2 位作者 董树锋 周宁慧 何光宇 《电力系统自动化》 EI CSCD 北大核心 2016年第7期49-53,共5页
求解变量的限值问题,最直观的方式为建立以待求变量为目标函数、以约束条件为可行域的优化模型,通过求解极大化和极小化问题,分别得到该变量的上限值和下限值。基于优化模型的求解方法的优点在于可综合考虑所有的约束,所得结果保守性较... 求解变量的限值问题,最直观的方式为建立以待求变量为目标函数、以约束条件为可行域的优化模型,通过求解极大化和极小化问题,分别得到该变量的上限值和下限值。基于优化模型的求解方法的优点在于可综合考虑所有的约束,所得结果保守性较小,甚至不存在保守性。首先简要介绍了求解状态变量限值和量测变量限值的优化模型。然而由于该优化模型为非凸模型,而对于非凸优化模型,无法得到其全局最优解,为解决该问题,继而建立了求解量测变量限值的锥优化模型。算例表明,该模型既保证了结果的可信性,也提高了求解效率。 展开更多
关键词 状态估计 集合论估计 非凸优化模型 优化模型
在线阅读 下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
2
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部