期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度强化学习的馈线-台区两阶段电压优化
被引量:
4
1
作者
徐晓春
李佑伟
+4 位作者
戴欣
袁洲茂
田恩东
姚顺
窦晓波
《电网与清洁能源》
CSCD
北大核心
2023年第3期63-73,共11页
分布式电源(distributed generation,DG)在10 kV和400 V配电网中大量接入,给配电网安全运行带来了巨大挑战。由于DG不确定性以及400 V台区实时量测数据不全的问题,基于最优潮流的优化方法难以解决馈线与台区的协同优化问题。为此,该文...
分布式电源(distributed generation,DG)在10 kV和400 V配电网中大量接入,给配电网安全运行带来了巨大挑战。由于DG不确定性以及400 V台区实时量测数据不全的问题,基于最优潮流的优化方法难以解决馈线与台区的协同优化问题。为此,该文提出了一种基于电压越限风险和深度强化学习(deep reinforcement learning,DRL)的馈线-台区两阶段优化方法。首先,基于概率最优潮流计算得到10 k V馈线系统的最低电压越限风险下的调控策略,以及节点电压期望值并下发至台区。接着,利用台区调控资源,基于深度强化学习实现台区电压与光伏消纳的多目标优化。最后基于改进的IEEE33节点系统验证了该文方法的有效性。
展开更多
关键词
电压优化
概率最优潮流
非全观测配电网
深度强化学习
分布式电源
在线阅读
下载PDF
职称材料
题名
基于深度强化学习的馈线-台区两阶段电压优化
被引量:
4
1
作者
徐晓春
李佑伟
戴欣
袁洲茂
田恩东
姚顺
窦晓波
机构
国网江苏省淮安供电公司
东南大学
出处
《电网与清洁能源》
CSCD
北大核心
2023年第3期63-73,共11页
基金
国网江苏省电力有限公司科技项目(J2021036)。
文摘
分布式电源(distributed generation,DG)在10 kV和400 V配电网中大量接入,给配电网安全运行带来了巨大挑战。由于DG不确定性以及400 V台区实时量测数据不全的问题,基于最优潮流的优化方法难以解决馈线与台区的协同优化问题。为此,该文提出了一种基于电压越限风险和深度强化学习(deep reinforcement learning,DRL)的馈线-台区两阶段优化方法。首先,基于概率最优潮流计算得到10 k V馈线系统的最低电压越限风险下的调控策略,以及节点电压期望值并下发至台区。接着,利用台区调控资源,基于深度强化学习实现台区电压与光伏消纳的多目标优化。最后基于改进的IEEE33节点系统验证了该文方法的有效性。
关键词
电压优化
概率最优潮流
非全观测配电网
深度强化学习
分布式电源
Keywords
voltage optimization
probabilistic optimization power flow
partial visible distribution network
deep reinforcement learning
distributed generation
分类号
TM76 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度强化学习的馈线-台区两阶段电压优化
徐晓春
李佑伟
戴欣
袁洲茂
田恩东
姚顺
窦晓波
《电网与清洁能源》
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部