期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于方向滤波器组与Laplacian能量和的图像融合算法
1
作者 叶玫 刘盈 《包装工程》 CAS 北大核心 2019年第1期218-227,共10页
目的针对基于Contourlet变换的融合算法在边缘上易出现吉布斯现象,使其融合图像产生几何失真的问题,设计一种非下采样方向滤波器组耦合局部Laplacian能量和的图像融合算法。方法首先,结合多小波变换(multi-wavelet transform,MWT)与非... 目的针对基于Contourlet变换的融合算法在边缘上易出现吉布斯现象,使其融合图像产生几何失真的问题,设计一种非下采样方向滤波器组耦合局部Laplacian能量和的图像融合算法。方法首先,结合多小波变换(multi-wavelet transform,MWT)与非下采样方向滤波器组(Non-Subsampled Direction FilterBank,NSDFB),将图像分解为3个高频方向系数和1个低频系数。对于低频系数,采用局部修正的Laplacian能量和(Local Sum-Modified-Laplacian,LSML)与脉冲耦合神经网络(Pulse couple neural network,PCNN)组合的LSML-PCNN模型来完成低频信息的融合。对于高频系数,通过提取低频和高频子带边缘,并利用系数绝对最大值法作为依据,实现高频系数的融合。结果实验数据表明,与当前图像融合方案相比,所提算法具有更高的融合质量,得到的融合图像边缘更加清晰和完整。结论所提算法拥有较高的融合视觉效果,可改善图像的对比度和分辨率,在图像处理领域具有一定的参考价值。 展开更多
关键词 图像融合 多NSDFB 局部改进的Laplacian能量和 脉冲耦合神经网络 非下采样方向滤波器组
在线阅读 下载PDF
基于多尺度方向局部极值滤波和ASR的图像融合 被引量:4
2
作者 刘先红 陈志斌 《激光与红外》 CAS CSCD 北大核心 2018年第5期644-650,共7页
为了更好地提取源图像的边缘和方向信息,充分利用边缘保持滤波器的保边缘特性和方向滤波器有效提取方向信息的能力,提出一种基于局部极值滤波和非下采样方向滤波器的多尺度方向局部极值滤波图像融合方法。源图像经多尺度方向局部极值滤... 为了更好地提取源图像的边缘和方向信息,充分利用边缘保持滤波器的保边缘特性和方向滤波器有效提取方向信息的能力,提出一种基于局部极值滤波和非下采样方向滤波器的多尺度方向局部极值滤波图像融合方法。源图像经多尺度方向局部极值滤波,得到低频子带以及一系列的高频方向细节子带,对低频子带系数提出一种基于自适应稀疏表示(ASR)的融合规则,采用空间频率与l1范数相结合的策略得到融合的稀疏表示系数,对高频方向细节子带系数提出一种基于改进拉普拉斯能量和匹配度的选择与加权平均相结合的融合策略。实验结果表明,本方法能够有效提取源图像的边缘等细节信息,融合结果对比度更高,具有更好的主观视觉效果,其客观评价指标也优于传统的图像融合方法。 展开更多
关键词 图像处理 图像融合 局部极值滤波 非下采样方向滤波器组 自适应稀疏表示 拉普拉斯能量和
在线阅读 下载PDF
基于局部混合滤波的SAR图像去噪 被引量:6
3
作者 刘帅奇 胡绍海 肖扬 《系统工程与电子技术》 EI CSCD 北大核心 2012年第2期396-402,共7页
相干斑噪声是合成孔径雷达(synthetic aperture radar,SAR)成像系统所固有的缺点,严重影响SAR图像的可用性,给后续的图像分割、特征提取和目标识别等工作带来严峻的挑战。结合非下采样方向滤波器和双树复小波变换各自的特点,提出一种新... 相干斑噪声是合成孔径雷达(synthetic aperture radar,SAR)成像系统所固有的缺点,严重影响SAR图像的可用性,给后续的图像分割、特征提取和目标识别等工作带来严峻的挑战。结合非下采样方向滤波器和双树复小波变换各自的特点,提出一种新的基于非下采样方向滤波-双树复小波变换的局部混合滤波SAR图像去噪算法,具有多方向和多尺度性,保持了图像的平移不变性,改善了图像的视觉效果。与其他算法不同,本文算法采用非下采样方向滤波器级联双树复小波的方法,不仅对每次产生的高频分量进行去噪,还对变换所产生的低频分量进行滤波去噪。实验结果表明:与使用同级双树复小波-轮廓波变换加软阈值去噪相比,本文算法的峰值信噪比提高2dB;与使用轮廓波加循环平移(cycle spinning,CS)软阈值算法去噪相比,本文算法去噪后的图像不仅峰值信噪比有所提高,而且去噪后的图像更为平滑,抑制了人造纹理产生,视觉效果得到了明显改善。 展开更多
关键词 非下采样方向滤波 双树复小波去噪 混合滤波去噪 合成孔径雷达图像去噪
在线阅读 下载PDF
基于多方向àtrous小波变换的多传感器图像融合 被引量:1
4
作者 李俊峰 李其申 +1 位作者 赵喜玲 江泽涛 《计算机工程与应用》 CSCD 北大核心 2008年第30期193-195,231,共4页
分析和研究了非下采样方向滤波器组及具有平移不变性的àtrous小波变换的图像变换的优点,提出了一种基于多方向àtrous小波变换的图像融合方法。首先利用àtrous小波变换将待融合源图像分解成不同尺度,不同分辨率的高低频分... 分析和研究了非下采样方向滤波器组及具有平移不变性的àtrous小波变换的图像变换的优点,提出了一种基于多方向àtrous小波变换的图像融合方法。首先利用àtrous小波变换将待融合源图像分解成不同尺度,不同分辨率的高低频分量,再对高频分量利用非下采样方向滤波器组进行方向分解,然后采取不同的融合方法对分解的高低频分量进行融合处理,低频系数采取平均加权法融合,高频系数则采取局部梯度优先的加权法融合,最后将融合的各频带进行逆非下采样方向滤波器组变换和逆àtrous小波变换得到融合图像。实验表明,在几种不同的客观评价标准下,该方法优于传统小波域中的融合效果,能有效地消除小波变换所带来的光谱扭曲和假边缘现象。 展开更多
关键词 图像融合 非下采样方向滤波器组 tatrous小波变换 平移不变性
在线阅读 下载PDF
结合引导滤波和卷积稀疏表示的红外与可见光图像融合 被引量:21
5
作者 刘先红 陈志斌 秦梦泽 《光学精密工程》 EI CAS CSCD 北大核心 2018年第5期1242-1253,共12页
为了解决红外与可见光图像融合时信息容易相互干扰、影响融合质量的问题,将引导滤波、高斯低通滤波与非下采样方向滤波器组相结合,提出一种新的图像融合方法。利用引导滤波和高斯低通滤波,将源图像分解为低频近似部分、强边缘部分和高... 为了解决红外与可见光图像融合时信息容易相互干扰、影响融合质量的问题,将引导滤波、高斯低通滤波与非下采样方向滤波器组相结合,提出一种新的图像融合方法。利用引导滤波和高斯低通滤波,将源图像分解为低频近似部分、强边缘部分和高频细节部分,并将高频细节部分进行非下采样方向滤波,进一步得到高频方向细节部分;对低频近似部分应用基于局部区域能量的融合规则,对强边缘部分提出一种基于卷积稀疏表示的融合规则,对高频方向细节部分提出改进的脉冲耦合神经网络的融合规则,得到相应的融合部分,并通过逆变换得到最终的融合图像。对多组红外与可见光图像的实验结果表明,算法得到的融合结果的主观视觉效果和客观评价指标均优于传统的图像融合方法,其客观评价指标中的标准差、信息熵、互信息、平均梯度和空间频率相比融合效果较好的基于离散小波变换和稀疏表示的融合方法平均提高20.28%、2.24%、47.41%、5.34%、8.02%。 展开更多
关键词 图像融合 边缘保持滤波 引导滤波 非下采样方向滤波器组 脉冲耦合神经网络 拉普拉斯能量和
在线阅读 下载PDF
基于多尺度边缘保持分解与PCNN的医学图像融合 被引量:8
6
作者 郭淑娟 高媛 +1 位作者 秦品乐 王丽芳 《计算机工程》 CAS CSCD 北大核心 2021年第3期276-283,共8页
在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处出现模糊,从而产生光晕。为提高融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提出一... 在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处出现模糊,从而产生光晕。为提高融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提出一种新的图像融合方法。对源图像进行加权最小二乘滤波分解得到图像的基础层和细节层,采用高斯滤波器对基础层进行二次分解得到低频层和边缘层,将分解过程中每级边缘层和细节层叠加构建高频层,并引入非下采样方向滤波器组进行方向分析。在此基础上,利用改进的空间频率以及区域能量激励PCNN融合高频层和低频层,通过逆变换得到最终的融合图像。实验结果表明,该方法能够突出医学图像的边缘轮廓并增强图像细节,可将更多的显著特征从源图像分离并转移到融合图像中。 展开更多
关键词 加权最小二乘滤波 非下采样方向滤波器组 边缘保持分解 多尺度分析 脉冲耦合神经网络 医学图像融合
在线阅读 下载PDF
基于BLMD和NSDFB算法的红外与可见光图像融合方法 被引量:9
7
作者 周晨旭 黄福珍 《红外技术》 CSCD 北大核心 2019年第2期176-182,共7页
针对传统图像融合方法容易导致融合图像出现细节不明显和目标信息不完整的问题,本文提出一种基于二维局部均值分解(Bidimensional Local Mean Decomposition,BLMD)和非下采样方向滤波器组(Nonsubsampled Directional Filter Banks,NSDFB... 针对传统图像融合方法容易导致融合图像出现细节不明显和目标信息不完整的问题,本文提出一种基于二维局部均值分解(Bidimensional Local Mean Decomposition,BLMD)和非下采样方向滤波器组(Nonsubsampled Directional Filter Banks,NSDFB)算法的红外与可见光图像融合方法(基于方向滤波的二维局部均值分解法,BidimensionalLocalMeanDecompositionbasedDirectionalFilteringAnalysis,BLMDDFA)。首先,计算两幅原始图片的熵值,同时提取熵值较大的图片的残余分量,该残余分量与另一张原始图片有着较强的相关性。然后,通过BLMD和NSDFB算法将残余分量和熵值较小的原始图片分解成低频子带和一系列不同尺度的高频方向子带,并使用不同的融合规则分别对低频子带和高频子带进行融合。最后,通过相应的逆变换运算获得融合图像。实验结果表明,本文方法的融合性能在对比度、细节信息展示和目标突出方面均高于经典的融合算法,在信息熵、标准差、空间频率和平均梯度方面较Laplacian方法中各指标分别提高了5.6%、28.9%、37.4%和47.6%,信噪比较Laplacian方法降低了8.5%。 展开更多
关键词 图像融合 二维局部均值分解 非下采样方向滤波器组 残余分量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部