(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the...(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of ...In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of the air bearings were analyzed.A finite volume method was adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations,and a modified SIMPLE algorithm for compressible fluid was applied to solve the discretized governing equations.The pressure field and velocity field of the air bearings were obtained,and the factors and rules affecting the static characteristics were analyzed.The results show that the pressure of near air intakes can reach above 80% of air supply pressure,and there is a pressure steep fall around the air intakes.When the film thickness is greater than 20 μm,the bearing capacity rapidly decreases as film thickness increases.As the air supply pressure increases from 0.2 to 0.6 MPa,the maximum static stiffness increases by more than three times.The calculation method proposed well fits the general principle,which can be extended to the characteristic analysis of other air bearings.展开更多
文摘(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
基金Project(2002AA742049) supported by the National High Technology Research and Development Program of China
文摘In order to provide some theoretical guideline for the structure design of the new type externally pressurized spherical air bearings,the static characteristics and the factors affecting the static characteristics of the air bearings were analyzed.A finite volume method was adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations,and a modified SIMPLE algorithm for compressible fluid was applied to solve the discretized governing equations.The pressure field and velocity field of the air bearings were obtained,and the factors and rules affecting the static characteristics were analyzed.The results show that the pressure of near air intakes can reach above 80% of air supply pressure,and there is a pressure steep fall around the air intakes.When the film thickness is greater than 20 μm,the bearing capacity rapidly decreases as film thickness increases.As the air supply pressure increases from 0.2 to 0.6 MPa,the maximum static stiffness increases by more than three times.The calculation method proposed well fits the general principle,which can be extended to the characteristic analysis of other air bearings.