期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于WGAN-div和CNN的毫米波雷达人体动作识别方法
1
作者
李秋生
钟滢洁
《贵州师范大学学报(自然科学版)》
北大核心
2025年第5期23-33,共11页
针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成...
针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成微多普勒时频谱图;其次,利用WGAN-div模型学习时频谱图特征分布,生成高质量扩充数据以缓解数据不足;最后,构建浅层CNN模型实现动作分类。实验结果表明,所提方法在6类人体动作识别任务中准确率达98.17%,较深度卷积生成对抗网络(DCGAN)和带梯度惩罚的Wasserstein生成对抗网络(WGAN-gp)分别提升1.67%和0.87%。该方法通过取消Lipschitz约束优化生成质量,有效解决了小样本场景下的识别性能下降问题,为雷达数据增强与动作识别提供了一种新思路。
展开更多
关键词
毫米波
雷达
人体动作识别
Wasserstein散度生成对抗网络
卷积神经网络
小样本学习
微多普勒时频谱
雷达数据增强
在线阅读
下载PDF
职称材料
题名
基于WGAN-div和CNN的毫米波雷达人体动作识别方法
1
作者
李秋生
钟滢洁
机构
赣南师范大学智能控制工程技术研究中心
赣南师范大学物理与电子信息学院
出处
《贵州师范大学学报(自然科学版)》
北大核心
2025年第5期23-33,共11页
基金
江西省自然科学基金面上项目(20242BAB25052)。
文摘
针对基于毫米波雷达的人体动作识别数据集规模小导致的模型过拟合问题,提出一种基于Wasserstein散度生成对抗网络(WGAN-div)与卷积神经网络(CNN)的联合识别方法。首先,通过搭建毫米波雷达平台采集人体动作的雷达回波数据,经预处理生成微多普勒时频谱图;其次,利用WGAN-div模型学习时频谱图特征分布,生成高质量扩充数据以缓解数据不足;最后,构建浅层CNN模型实现动作分类。实验结果表明,所提方法在6类人体动作识别任务中准确率达98.17%,较深度卷积生成对抗网络(DCGAN)和带梯度惩罚的Wasserstein生成对抗网络(WGAN-gp)分别提升1.67%和0.87%。该方法通过取消Lipschitz约束优化生成质量,有效解决了小样本场景下的识别性能下降问题,为雷达数据增强与动作识别提供了一种新思路。
关键词
毫米波
雷达
人体动作识别
Wasserstein散度生成对抗网络
卷积神经网络
小样本学习
微多普勒时频谱
雷达数据增强
Keywords
millimeter-wave radar
human action recognition
WGAN-div
CNN
small-sample learning
micro-Doppler spectrogram
radar data augmentation
分类号
TN957.51 [电子电信—信号与信息处理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于WGAN-div和CNN的毫米波雷达人体动作识别方法
李秋生
钟滢洁
《贵州师范大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部