期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
雷达信号与遥感地图融合的深度学习低慢小目标检测算法 被引量:3
1
作者 高梅国 林升泰 《信号处理》 CSCD 北大核心 2024年第1期82-93,共12页
雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷... 雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷达与地图信息在检测过程中进行重要性程度区分,具体优化内容为减少地图特征提取模块的网络深度,加入通道注意力机制,让神经网络自主学习雷达信息与地图信息特征的权重,使神经网能够更好地利用地图信息对雷达目标进行辅助检测。在此优化基础上,本文重新设计出了雷达地图融合检测网络RMDN-V2。算法的主要思想为利用卫星遥感地图来提供背景环境信息,作为雷达信号检测的辅助,通过将目标背景中的特征信息融入检测决策中,提高目标检测的准确性和鲁棒性,减少对强杂波和移动物体的干扰敏感性,改善目标检测算法在复杂环境下的表现。最后的无人机雷达实测数据实验结果表明,本文所做的针对性优化是有效的,RMDN-V2的检测性能优于原始的RMDN,同时本文算法检测性能远超传统的雷达检测算法,同时也优于目前主流的一些深度学习雷达目标检测算法。本文为解决当下低慢小目标检测的难题提出了新的算法。 展开更多
关键词 雷达目标检测 深度学习 雷达信号和遥感地图融合 低慢小目标检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部