多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超...多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.9486%、2.0585%、2.5331%,相比其他预测方法具有更高准确率。展开更多
针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合...针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。展开更多
文摘多元负荷预测技术是保证综合能源系统(integrated energy system,IES)供需平衡与稳定运行的关键基石。但具有强随机性与波动性的IES负荷加剧了超短期多元负荷准确预测的难度。为此,提出考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测方法。构建基于最小平均包络熵的变分模态分解参数优化模型,将IES多元负荷分解为本征模态分量集合;基于统一信息系数法筛选多元负荷预测的日历、气象与负荷强相关特征;结合负荷本征模态分量集合、日历规则、气象环境与负荷数据,构建Bagging集成超短期多元负荷预测模型,并建立基于平均绝对百分比误差与决定系数的集成策略优化模型,进而得到最优集成策略与最终预测结果。以美国亚利桑那州立大学坦佩校区IES为对象展开仿真验证,结果表明,所提方法的电、热、冷负荷预测平均绝对百分比误差分别为1.9486%、2.0585%、2.5331%,相比其他预测方法具有更高准确率。
文摘针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。