期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
考虑时序二维变化的日前市场电价预测模型 被引量:8
1
作者 陈宇聪 白晓清 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期22-29,共8页
电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史... 电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史数据进行分解,然后对其高、低频子序列分别采用考虑时序二维变化的Ti⁃mesNet和基于统计分析的差分自回归移动平均进行预测,二者结果之和构成日前市场电价的预测值。仿真结果表明,所提方法相较于现有单一或组合模型具有较高的预测精度。 展开更多
关键词 日前市场电价预测 完全集成经验模式分解 差分自回归移动平均 TimesNet 时序二维变化
在线阅读 下载PDF
考虑站点分类的城市轨道短时客流预测方法 被引量:4
2
作者 王泰州 徐金华 +2 位作者 陈姜会 李岩 任璐 《计算机工程与应用》 CSCD 北大核心 2024年第19期343-353,共11页
精确、可靠的短时客流预测可为城市轨道交通运营提供保障。考虑不同站点的客流时序特征差异,在对站点分类的基础上,建立了一种城市轨道站点客流的深度学习预测方法。以动态时间规整及K-means算法对站点进行分类,分析各类站点的客流时序... 精确、可靠的短时客流预测可为城市轨道交通运营提供保障。考虑不同站点的客流时序特征差异,在对站点分类的基础上,建立了一种城市轨道站点客流的深度学习预测方法。以动态时间规整及K-means算法对站点进行分类,分析各类站点的客流时序特征;采用自适应噪声完全集成经验模式分解算法对各类站点客流数据进行分解,以减少数据噪声的影响;提出一种融合长短期记忆网络和Transformer模型的深度学习预测方法,从而预测不同类型站点客流。应用西安市轨道交通客流数据验证该方法,结果表明:根据工作日及非工作日的客流数据时序特征可将站点分为职住均衡型、商务办公型、休闲娱乐型和密集居住型4类,所提出的方法在不同类型站点的客流预测结果相比于其他3种单一模型和3种组合模型,平均绝对误差降低16.36%~51.02%、均方根误差降低10.35%~50.76%,平均绝对百分比误差降低14.71%~48.62%,基于15 min、30 min、45 min及60 min不同时间间隔统计的站点客流数据的预测结果相比于其他6种模型,3种指标分别降低了12.63%~51.02%、8.08%~49.12%和6.83%~47.26%。 展开更多
关键词 城市轨道交通 短时预测 站点分类 自适应噪声完全集成经验模式分解算法 长短期记忆网络 TRANSFORMER
在线阅读 下载PDF
大型旋转机械非平稳振动信号的EEMD降噪方法 被引量:67
3
作者 曹冲锋 杨世锡 杨将新 《振动与冲击》 EI CSCD 北大核心 2009年第9期33-38,共6页
针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利... 针对现有各种降噪方法处理非平稳机械振动信号存在的缺点,提出一种基于辅助白噪声经验模式分解技术来自适应实现旋转机械非平稳振动信号降噪。该方法是一种集成的经验模式分解(Ensemble Empirical mode decomposition,EEMD)降噪算法,利用正态分布白噪声在经验模式分解中具有的二进尺度分解特性,可以有效抑制常规经验模式分解降噪算法处理非平稳振动信号时产生的模式混叠现象。通过仿真计算和转子启动过程试验振动信号对新降噪方法、经验模式分解降噪方法及小波降噪方法的性能进行了比较测试,结果表明,在非平稳机械振动信号降噪方面,新降噪方法具有更高的信噪比,不仅能够消除高斯噪声,而且能够有效降低脉冲干扰,提取出反映信号实际物理意义的振动固有模式。 展开更多
关键词 降噪 旋转机械 启动过程 振动信号 集成经验模式分解
在线阅读 下载PDF
基于EEMD-多尺度主元分析的回转支承信号降噪方法研究 被引量:9
4
作者 杨杰 陈捷 +2 位作者 洪荣晶 王华 封杨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期1173-1180,共8页
为较好地提取故障信号,提出一种集成经验模式分解(EEMD)和主元分析相结合的降噪方法,给出EEMD自适应分解后本征模函数(IMF)的选择方法,将提取出的IMF分量进行信号重构,从而达到降噪目的。将多尺度主元分析的EEMD降噪、基于峭度准则的EEM... 为较好地提取故障信号,提出一种集成经验模式分解(EEMD)和主元分析相结合的降噪方法,给出EEMD自适应分解后本征模函数(IMF)的选择方法,将提取出的IMF分量进行信号重构,从而达到降噪目的。将多尺度主元分析的EEMD降噪、基于峭度准则的EEMD降噪以及基于相关系数准则的EEMD降噪方法分别对仿真信号和回转支承故障信号降噪性能进行对比。研究结果表明:基于多尺度主元分析的EEMD降噪方法具有更高的信噪比(SNR),提取出更能反映真实故障信息的特征,具有一定的实际工程应用价值。 展开更多
关键词 回转支承 主元分析 集成经验模式分解 滤波 振动信号
在线阅读 下载PDF
一种基于样本熵的轴承故障诊断方法 被引量:134
5
作者 赵志宏 杨绍普 《振动与冲击》 EI CSCD 北大核心 2012年第6期136-140,154,共6页
运用非线性动力学参数样本熵作为特征,对轴承正常、内圈故障、滚动体故障、外圈故障四种工况的振动信号进行分析识别。针对利用原始振动信号的样本熵只能在一个尺度域进行分析,无法准确区分轴承运行状况的问题,提出一种基于集成经验模... 运用非线性动力学参数样本熵作为特征,对轴承正常、内圈故障、滚动体故障、外圈故障四种工况的振动信号进行分析识别。针对利用原始振动信号的样本熵只能在一个尺度域进行分析,无法准确区分轴承运行状况的问题,提出一种基于集成经验模式分解与样本熵的轴承故障诊断方法。首先利用集成经验模式分解方法将原始振动信号分解为有限个内蕴模式分量,从中选取包含故障主要信息的前几个内蕴模式分量的样本熵作为特征,然后利用支持向量机进行轴承故障诊断,这样可以在多个尺度对轴承信号进行分析,提高了轴承故障诊断的准确率。通过轴承故障实测信号的诊断实验,证明了该方法的可行性和有效性。 展开更多
关键词 故障诊断 集成经验模式分解 样本熵
在线阅读 下载PDF
EEMD能量熵与优化LS-SVM的滚动轴承故障诊断 被引量:13
6
作者 陈法法 李冕 +1 位作者 陈保家 陈从平 《组合机床与自动化加工技术》 北大核心 2016年第12期71-75,共5页
针对滚动轴承振动故障信号非平稳、非线性难以有效诊断的问题,提出基于集成经验模式分解(ensemble empirical mode decomposition,EEMD)能量熵与优化最小二乘支持向量机(least square support vector machine,LS-SVM)的滚动轴承故障诊... 针对滚动轴承振动故障信号非平稳、非线性难以有效诊断的问题,提出基于集成经验模式分解(ensemble empirical mode decomposition,EEMD)能量熵与优化最小二乘支持向量机(least square support vector machine,LS-SVM)的滚动轴承故障诊断方法。首先利用EEMD对滚动轴承的振动故障信号进行分解,得到各阶的内禀模态函数分量(IMF)并计算其能量构造成特征向量矩阵,随后将该特征向量矩阵输入给优化的LS-SVM进行故障模式的分类辨识。通过实验验证了该方法的有效性和可行性,结果表明,基于EEMD能量熵特征与优化LS-SVM的滚动轴承故障诊断方法能够有效的诊断滚动轴承的实际运行工况。 展开更多
关键词 集成经验模式分解 最小二乘支持向量机 滚动轴承 故障诊断
在线阅读 下载PDF
基于自适应EEMD的风电机组联轴器松动故障诊断 被引量:4
7
作者 李国英 王诗彬 陈雪峰 《振动.测试与诊断》 EI CSCD 北大核心 2022年第2期292-298,407,408,共9页
联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应... 联轴器是风电机组高速旋转齿轮箱和发电机之间的唯一机械连接件,针对联轴器松动后存在振动信号微弱、干扰大、故障特征难以识别的难题,提出了一种以协同信噪比(collaborative signal-to-noise ratio index,简称CSNR)为测度指标的自适应集成经验模式分解(ensemble empirical mode decomposition,简称EEMD)故障诊断方法。将该方法应用于数值仿真信号,实现了仿真信号构成分量的准确分离;应用于风场风电机组联轴器的松动故障诊断,有效提取了联轴器松动强噪声微弱信号中的故障特征,验证了该方法在工程实际应用中的有效性和实用性。 展开更多
关键词 集成经验模式分解 风电机组 故障诊断 振动信号
在线阅读 下载PDF
基于CEEMDAN-IPSO-LSTM的城市轨道交通短时客流预测方法研究 被引量:8
8
作者 曾璐 李紫诺 +1 位作者 杨杰 许心越 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3273-3286,共14页
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函... 消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。 展开更多
关键词 城市轨道交通 短时客流预测 自适应噪声完全集成经验模式分解算法 改进粒子群算法 长短期记忆神经网络 组合模型 CEEMDAN-IPSO-LSTM
在线阅读 下载PDF
EEMD在激光测云仪后向散射信号处理中的应用 被引量:6
9
作者 张冬冬 郝明磊 行鸿彦 《电子测量与仪器学报》 CSCD 北大核心 2017年第10期1589-1595,共7页
激光测云仪后向散射信号是典型的非线性、非稳态信号,容易受噪声污染。针对该问题采用集成经验模态分解(EEMD)去噪算法进行处理,首先对含噪信号进行经验模态分解(EMD),将分解后的IMF分量进行自相关性分析,找出含噪占有量较大的IMF分量,... 激光测云仪后向散射信号是典型的非线性、非稳态信号,容易受噪声污染。针对该问题采用集成经验模态分解(EEMD)去噪算法进行处理,首先对含噪信号进行经验模态分解(EMD),将分解后的IMF分量进行自相关性分析,找出含噪占有量较大的IMF分量,对其进行SG(savitzky-golay)滤波,最后将滤波后的IMF分量和剩余分量进行信号的重构。经仿真实验结果表明,与传统的EMD方法相比,EEMD方法处理含噪信号后的输出信噪比提高了1.695 dB,均方误差平均降低了30%以上,说明该方法可以适用于非线性、非稳态的后向散射回波信号去噪处理,能为激光测云仪下一级的云底高度反演提供高信噪比的初始数据。 展开更多
关键词 激光云高仪 集成经验模式分解 后向散射信号 去噪
在线阅读 下载PDF
基于Prony分析特征提取的同调机组分群方法 被引量:11
10
作者 李高望 张智 +1 位作者 李达 陈艳波 《电力系统保护与控制》 EI CSCD 北大核心 2020年第22期91-99,共9页
同调机群识别在电力系统的动态等值、主动解列控制中具有重要意义。提出一种基于Prony分析特征提取的同调机组分群方法。首先针对Prony分析受噪声干扰严重的缺点,利用集成经验模式分解(EnsembleEmpirical Mode Decomposition,EEMD)方法... 同调机群识别在电力系统的动态等值、主动解列控制中具有重要意义。提出一种基于Prony分析特征提取的同调机组分群方法。首先针对Prony分析受噪声干扰严重的缺点,利用集成经验模式分解(EnsembleEmpirical Mode Decomposition,EEMD)方法对含噪声的信号降噪。然后对降噪后的功角信号进行Prony分析,提取功角信号的幅值、频率和阻尼特征值,形成每台机组的特征向量。最后将系统中所有机组特征向量组成的特征矩阵输入到自组织神经网络进行聚类,从而实现同调机组分群。EPRI-36节点系统和华北电网系统算例表明,所提方法可以很好地降低噪声影响,充分提取功角曲线特征,准确识别同调机组。 展开更多
关键词 同调机群 PRONY分析 集成经验模式分解 自组织神经网络
在线阅读 下载PDF
基于ICEEMDAN-ICSSA-CKELM-TCCA的短期风电功率预测研究
11
作者 韦权 汤占军 贺建峰 《现代电子技术》 2023年第24期39-46,共8页
为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构... 为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构,得到更适合提取特征的新序列。然后,建立包含Poly核函数、RBF核函数的组合核极限学习机(CKELM)对新的序列进行初步预测,并利用融合了Tent混沌映射、动态惯性权重和自适应t变异策略的改进混沌麻雀搜索算法(ICSSA)对其参数进行优化,提升CKELM预测性能。最后将时间卷积网络(TCN)与高效通道注意力机制(ECA)组合搭建为TCCA模型,对初步预测结果进行修正。以中国云南省某风电场的数据为例进行多组实验,结果表明该模型针对风电功率具有较高的预测精度。 展开更多
关键词 短期风电功率预测 自适应噪声的完全集成经验模式分解 混沌麻雀搜索算法 组合核极限学习机 样本熵 时间卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部