期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法 被引量:34
1
作者 王冉 后麒麟 +2 位作者 石如玉 周雁翔 胡雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第4期111-120,共10页
锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型... 锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型的锂电池剩余寿命预测方法。首先,采用变分模态分解将锂电池容量数据进行多尺度分解,得到信号的全局退化趋势和局部随机波动分量;然后,分别采用多层感知机(MLP)和长短期记忆神经网络(LSTM)对全局退化趋势和各波动分量进行建模;最后,将各个分量子模型的预测结果进行集成,获得最终的锂电池剩余寿命预测结果。实验结果表明,该方法具有较高的预测精度与稳定性。 展开更多
关键词 锂电池剩余寿命预测 变分模态分解 长短期记忆神经网络 多层感知机 集成深度模型
在线阅读 下载PDF
基于深度森林与异质集成的标记分布学习方法
2
作者 王艺霏 祝继华 +1 位作者 刘新媛 周熠炀 《软件学报》 EI CSCD 北大核心 2024年第7期3410-3427,共18页
作为一种解决标签模糊性问题的新学习范式,标记分布学习(LDL)近年来受到了广泛的关注.为了进一步提升标记分布学习的预测性能,提出一种联合深度森林与异质集成的标记分布学习方法(LDLDF).所提方法采用深度森林的级联结构模拟具有多层处... 作为一种解决标签模糊性问题的新学习范式,标记分布学习(LDL)近年来受到了广泛的关注.为了进一步提升标记分布学习的预测性能,提出一种联合深度森林与异质集成的标记分布学习方法(LDLDF).所提方法采用深度森林的级联结构模拟具有多层处理结构的深度学习模型,在级联层中组合多个异质分类器增加集成的多样性.相较于其他现有LDL方法,LDLDF能够逐层处理信息,学习更好的特征表示,挖掘数据中丰富的语义信息,具有强大的表示学习能力和泛化能力.此外,考虑到深层模型可能出现的模型退化问题,LDLDF采用一种层特征重用机制(layer feature reuse)降低模型的训练误差,有效利用深层模型每一层的预测能力.大量的实验结果表明,所提方法优于近期的同类方法. 展开更多
关键词 标记分布学习 深度森林 深度集成模型 异质集成学习 特征重用
在线阅读 下载PDF
基于深度学习的软基管廊结构性能预测 被引量:3
3
作者 蔡丹丹 高玮 +3 位作者 王森 杨鹏宇 葛双双 马鹏飞 《三峡大学学报(自然科学版)》 北大核心 2024年第1期63-70,共8页
地下综合管廊在运营期普遍受到车辆荷载的微扰动影响,追踪该环境下的结构微量异常变形,判断可能发生的异常(类似差异沉降等),对准确预测管廊的安全性意义重大.针对江苏省宿迁市高铁商务区综合管廊工程,开展了现场管廊结构监测研究,实测... 地下综合管廊在运营期普遍受到车辆荷载的微扰动影响,追踪该环境下的结构微量异常变形,判断可能发生的异常(类似差异沉降等),对准确预测管廊的安全性意义重大.针对江苏省宿迁市高铁商务区综合管廊工程,开展了现场管廊结构监测研究,实测得到了车辆荷载、时间等扰动因素及其影响下的结构响应(结构沉降位移和结构应力)的大数据集.针对监测结果,基于鲸鱼算法和深度置信网络集成深度学习模型对大数据集进行深度挖掘和学习,预测结构运营的安全性.研究表明,采用深度学习模型可以对车辆荷载等微扰动影响下综合管廊结构的安全性能进行较准确的预测,模型的适用性较好. 展开更多
关键词 地下综合管廊 现场监测 集成深度学习模型 车辆荷载 安全性预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部