期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
1
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习 健康状态在线估计
在线阅读 下载PDF
基于成员相似性的集成极端学习机 被引量:1
2
作者 叶松林 韩飞 赵敏汝 《计算机应用》 CSCD 北大核心 2014年第4期1089-1093,共5页
为了增大各成员间的差异度以改善集成系统的性能,提出了一种基于成员间相似性选择的集成极端学习机(ELM)。首先,筛选出分类性能较高的备选极端学习机;其次,根据成员间的相似性运用微粒群算法(PSO)进一步选出最优的集成成员集合。通过选... 为了增大各成员间的差异度以改善集成系统的性能,提出了一种基于成员间相似性选择的集成极端学习机(ELM)。首先,筛选出分类性能较高的备选极端学习机;其次,根据成员间的相似性运用微粒群算法(PSO)进一步选出最优的集成成员集合。通过选出相似度低的极端学习机来提高集成成员间差异度,从而有效提高集成系统的分类能力。选出的成员学习机在不同的集成规则下都具有良好性能。在四个UCI数据集上的实验结果表明,与经典的集成极端学习机相比,基于成员相似性选择的集成极端学习机具有更优的泛化性能和稳定性。 展开更多
关键词 微粒群算法 集成极端学习 成员相似性 极端学习 泛化性能
在线阅读 下载PDF
选择性集成学习算法综述 被引量:143
3
作者 张春霞 张讲社 《计算机学报》 EI CSCD 北大核心 2011年第8期1399-1410,共12页
集成学习因其能显著提高一个学习系统的泛化能力而得到了机器学习界的广泛关注,但随着基学习机数目的增多,集成学习机的预测速度明显下降,其所需的存储空间也迅速增加.选择性集成学习的主要目的是进一步改善集成学习机的预测效果,提高... 集成学习因其能显著提高一个学习系统的泛化能力而得到了机器学习界的广泛关注,但随着基学习机数目的增多,集成学习机的预测速度明显下降,其所需的存储空间也迅速增加.选择性集成学习的主要目的是进一步改善集成学习机的预测效果,提高集成学习机的预测速度,并降低其存储需求.该文对现有的选择性集成学习算法进行了详细综述,按照算法采用的选择策略对其进行了分类,并分析了各种算法的主要特点,最后对选择性集成学习在将来的可能研究方向进行了探讨. 展开更多
关键词 选择性集成学习 学习 集成学习机 多样性 泛化能力
在线阅读 下载PDF
基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型
4
作者 王恒迪 王豪馗 +2 位作者 陈鹏 吴升德 马盈丰 《机电工程》 北大核心 2025年第6期1093-1101,共9页
针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解... 针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解的精确度,并采用最小残差指数(REI)作为最优模态分量的选取准则,从最优模态分量中提取了故障信号时域、频域及熵值的关键特征;然后,将所提取的特征输入EELM中进行了故障识别;最后,采用Yager加权平均规则对EELM的分类结果进行了融合,得到了综合故障诊断结果。研究结果表明:IVYA-FMD在信号处理过程中,具有优秀的特征提取和抗干扰能力,可有效提取原始信号的故障特征;IVYA-FMD和EELM-Yager模型在实验数据中,训练集与测试集按照8∶2的比例进行分割时的准确率达到99.12%;当训练集与测试集按照2:8的比例进行分割时,该方法在实验数据中的准确率高达92.5%,在CWRU数据集和SEU数据集中的准确率均超过96.8%。与其他智能诊断模型相比,IVYA-FMD和EELM-Yager在小样本滚动轴承故障诊断领域展现出显著的可行性和优越性。 展开更多
关键词 特征模态分解 常春藤算法 集成极限学习 Yager加权平均 小样本故障诊断 滚动轴承
在线阅读 下载PDF
基于集成ELM的锂离子电池充电截止电压下的SOC和SOH联合估计 被引量:19
5
作者 毛玲 温佳林 +1 位作者 赵晋斌 董浩 《电力系统保护与控制》 EI CSCD 北大核心 2023年第11期86-95,共10页
充电截止电压是大多数电动汽车用户充电都会经历的电压点。针对传统安时积分法忽略初始容量误差和电池老化等一系列待优化的问题,提出了双层集成极限学习机(extreme learning machine,ELM)算法,实现锂离子电池充电截止电压下的荷电状态(... 充电截止电压是大多数电动汽车用户充电都会经历的电压点。针对传统安时积分法忽略初始容量误差和电池老化等一系列待优化的问题,提出了双层集成极限学习机(extreme learning machine,ELM)算法,实现锂离子电池充电截止电压下的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)联合估计。首先,提取易测的电池健康特征(health indicator,HI),采用集成极限学习机映射HI及充电所需时间与SOH之间的关系。其次,用测得的HI估计难以在线测量的充电所需时间,对充电截止电压下安时积分法的SOC进行在线修正。该方法充分考虑了电动汽车用户初始充电状态的不确定性,指导电动汽车用户合理充电。此外,通过选择合适的集成ELM模型集成度,解决了单个ELM模型输出不稳定的问题。最后,选用NASA和CALCE数据集进行实验验证。验证结果表明,锂离子电池充电截止电压下SOC的估计均方根误差均小于1.5%,集成ELM相比于其他常见算法具有较高的训练、测试精度和较短的预测时间。 展开更多
关键词 锂离子电池 荷电状态 健康状态 健康特征 集成极限学习
在线阅读 下载PDF
基于EOS-ELM的高频地波雷达有效波高反演 被引量:2
6
作者 张晓愉 楚晓亮 王曙曜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S1期163-169,共7页
高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限... 高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限学习机(EOS-ELM)的方法,利用高频地波雷达数据,综合考虑一阶谱和二阶谱的特征信息来进行有效波高的反演。学习机能够有效选择一阶谱和二阶谱信息,使结果达到最优化,从而提高有效波高的反演精度。针对低海况的数据,本文通过分析确定波高分类阈值,将数据分段进行波高反演,进一步提高了波高反演的精度。 展开更多
关键词 高频地波雷达 有效波高反演 集成在线顺序极限学习(EOS-ELM)
在线阅读 下载PDF
气动目标多频点调制谱融合增强识别方法
7
作者 赵庆媛 赵志强 +1 位作者 叶春茂 鲁耀兵 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期2043-2050,共8页
预警雷达探测过程中气动目标微动回波能量弱导致识别性能不稳定。针对该问题,提出一种基于稀疏约束非负矩阵分解(sparse constrained non-negative matrix factorization,SCNMF)和集成极限学习机(integrated extreme learning machine,I... 预警雷达探测过程中气动目标微动回波能量弱导致识别性能不稳定。针对该问题,提出一种基于稀疏约束非负矩阵分解(sparse constrained non-negative matrix factorization,SCNMF)和集成极限学习机(integrated extreme learning machine,IELM)的多频点调制谱融合增强识别方法。通过分析微动部件回波特性,对多频点频域幅度谱进行SCNMF处理实现像素级融合得到特征增强后的稀疏调制谱,并将其作为样本输入IELM,实现气动目标类型识别。仿真和实测数据表明,本文方法能够有效融合多频点微动特征,具有抗噪能力强、所需训练样本少和识别性能稳健等优势。 展开更多
关键词 调制谱 气动目标 稀疏约束非负矩阵分解 集成极限学习
在线阅读 下载PDF
Log integration on large scale for global networking monitoring
8
作者 缪嘉嘉 吴泉源 贾焰 《Journal of Central South University》 SCIE EI CAS 2009年第6期976-981,共6页
Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitor... Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitoring sensors. To tackle the challenge of heterogenous schema, an instance-based approach for schema mapping, named instance-based machine-learning (IML) approach was described. And to solve the problem of heterogenous instance, a novel approach, called statistic-based clustering (SBC) approach, which utilized clustering and statistics technologies to match large scale sources holistically, was also proposed. These two algorithms utilized the machine-leaning and clustering technology to improve the accuracy. Experimental analysis shows that the IML approach is more precise than SBC approach, reaching at least precision of 81% and recall rate of 82%. Simulation studies further show that SBC can tackle large scale sources holisticalty with 85% recall rate when there are 38 data sources. 展开更多
关键词 MACHINE-LEARNING CLUSTERING data integration schema matching instance matching
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部