期刊文献+
共找到1,489篇文章
< 1 2 75 >
每页显示 20 50 100
基于集成学习和考虑滑坡负样本的滑坡易发性评价 被引量:1
1
作者 郑元勋 周康康 +4 位作者 胡少伟 张海超 于国卿 徐路凯 彭浩 《人民黄河》 北大核心 2025年第7期116-123,共8页
滑坡易发性评价对区域防灾减灾具有重要意义。针对机器学习算法的滑坡易发性评价中单一分类器精确度欠佳,以及滑坡负样本选择较为随意的问题,提出一种基于信息量法的滑坡负样本选择方式耦合集成学习算法的滑坡易发性评价模型。以黄河上... 滑坡易发性评价对区域防灾减灾具有重要意义。针对机器学习算法的滑坡易发性评价中单一分类器精确度欠佳,以及滑坡负样本选择较为随意的问题,提出一种基于信息量法的滑坡负样本选择方式耦合集成学习算法的滑坡易发性评价模型。以黄河上游李家峡至公伯峡段为研究区,选取高程、坡度、降水量等13个因子作为滑坡发生的评价因子,采用缓冲区、低坡度和信息量法3种滑坡负样本选择方式,通过构建分类回归树(CART)以及3种集成学习算法(Bagging、Boosting和随机森林)的滑坡易发性评价模型,分析不同集成学习算法和不同滑坡负样本选择方式下评价模型的性能。结果表明:集成学习算法均可以提升单一基分类器的模型性能,且Boosting算法的提升效果最为突出;信息量法负样本选择方式充分考虑了大多数评价因子,模型可靠性更高。 展开更多
关键词 滑坡易发性 集成学习 信息量法 滑坡负样本 黄河上游
在线阅读 下载PDF
基于集成学习模型与贝叶斯优化算法的成矿预测 被引量:1
2
作者 孔春芳 田倩 +3 位作者 刘健 蔡国荣 赵杰 徐凯 《地学前缘》 北大核心 2025年第4期122-139,共18页
全球进入隐伏矿体勘查时代,急需新的找矿预测方法。利用集成学习进行的数据驱动的成矿预测模型正在成为深部隐伏矿产勘探的有力工具。然而,基于集成学习的成矿预测模型面临着一些普遍的问题,特别是模型的参数调优。模型的参数调优是一... 全球进入隐伏矿体勘查时代,急需新的找矿预测方法。利用集成学习进行的数据驱动的成矿预测模型正在成为深部隐伏矿产勘探的有力工具。然而,基于集成学习的成矿预测模型面临着一些普遍的问题,特别是模型的参数调优。模型的参数调优是一个非常耗时的过程,需要繁琐的计算和足够的专家经验。本文提出了一种基于多源地学知识与贝叶斯优化算法的集成学习模型来解决上述问题。具体来说,首先,基于多源地学知识,构建锰矿成矿预测数据库;其次,基于自适应提升模型(Adaptive Boosting,AdaBoost)和随机森林(Random Forest,RF)模型,建立黔东北锰矿成矿预测模型;然后,采用贝叶斯优化算法(Bayesian Optimization,BO),通过5倍交叉验证的辅助,寻找BO-AdaBoost和BO-RF模型最合适的超参数组合;最后,利用精度、准确率、召回率、F_(1)分数、kappa系数、AUC值等参数及已有成果检测模型的性能。实验结果发现,BO-AdaBoost和BO-RF模型的AUC值都得到了显著的提高,表明BO是一个强大的优化工具,优化结果为集成学习模型的超参数设置提供了参考。同时,实验结果也表明:BO-AdaBoost模型(92.8%)比BO-RF模型(89.9%)具有更高的预测精度和地质泛化能力,在成矿预测方面具有巨大潜力。基于BO-AdaBoost模型的预测图为黔东北隐伏锰矿矿床的勘探提供了重要线索,并可以指导未来的矿产勘探与开发。 展开更多
关键词 集成学习 自适应提升模型 随机森林 贝叶斯优化算法 隐伏锰矿 成矿预测
在线阅读 下载PDF
基于集成学习的综掘面粉尘浓度预测模型 被引量:3
3
作者 王和堂 谭江龙 +3 位作者 杨天龙 刘焱 王辉 杨景皓 《金属矿山》 北大核心 2025年第5期185-194,共10页
针对现有的粉尘监测预警技术存在数据延迟高、信息融合差和预测精度低等缺陷,利用杭来湾煤矿30202综掘面粉尘监测数据集,集成机器学习和深度学习混合算法框架,构建了多变量特征耦合的粉尘浓度预测模型。基于偏差—方差均衡准则对预测模... 针对现有的粉尘监测预警技术存在数据延迟高、信息融合差和预测精度低等缺陷,利用杭来湾煤矿30202综掘面粉尘监测数据集,集成机器学习和深度学习混合算法框架,构建了多变量特征耦合的粉尘浓度预测模型。基于偏差—方差均衡准则对预测模型进行了超参数优化,并采用均方误差(MSE)与平均绝对百分比误差(MAPE)双指标评估模型预测效果。结果表明:①机器学习算法的MSE普遍低于深度学习算法,其局部准确性优于深度学习算法,MAPE和整体稳定性则相反,XGBoost和Bi-RNN分别是机器学习和深度学习算法中预测结果局部准确性和整体稳定性最优的。②机器学习、深度学习及混合集成模型较基学习器平均MSE降低了23.86、11.82、24.84;机器学习模型的MAPE提高了0.42个百分点,其余2种模型的MAPE分别降低了0.83、1.08个百分点,混合集成模型兼具机器学习局部准确率高和深度学习整体稳定性强的特点,整体预测效果最好。研究结果可为矿山智能精准高效降尘技术的发展提供理论基础。 展开更多
关键词 粉尘浓度预测 机器学习 深度学习 集成学习
在线阅读 下载PDF
基于Levy飞行和麻雀搜索算法优化集成学习模型的水质估算 被引量:3
4
作者 李爱民 康轩 +3 位作者 袁铮 王海隆 闫翔宇 许有成 《同济大学学报(自然科学版)》 北大核心 2025年第3期450-461,共12页
由于水体的光学复杂性和不同水质参数之间的相互作用,利用集成学习方法估算水质参数具有优势;然而,在建模过程中如何合理选择超参数仍然是一个难题。麻雀搜索算法能够快速搜索集成学习模型的最优参数;而Levy飞行算法可以防止麻雀搜索算... 由于水体的光学复杂性和不同水质参数之间的相互作用,利用集成学习方法估算水质参数具有优势;然而,在建模过程中如何合理选择超参数仍然是一个难题。麻雀搜索算法能够快速搜索集成学习模型的最优参数;而Levy飞行算法可以防止麻雀搜索算法(Sparrow Search Algorithm,SSA)陷入局部最优,并提高模型的准确性和效率。使用Levy飞行算法和麻雀搜索算法对随机森林(RandomForest,RF)、自适应回归(AdaBoost Regression,ABR)和类别提升回归(CatBoost Regression,CBR)3种集成学习模型进行了优化。以郑州东风渠和熊耳河为研究区,基于实测叶绿素a(chlorophyll-a,Chl-a)和总悬浮物(total suspended solids,TSM)数据,构建了LSSA-RF、LSSA-ABR和LSSA-CBR这3种估算模型。实验结果表明:模型经过优化后,各项指标均有不同程度的提高。其中表现最优的是LSSA-CBR模型;CBR模型是在梯度提升框架下进行的建模,对比RF和CBR模型具有更高维度的学习能力。在叶绿素a的估算中,LSSA-CBR估算模型的均方根误差为2.325μg·L^(-1),决定系数为0.896;在总悬浮物的估算中,LSSA-CBR模型的均方根误差为1.598 mg·L^(-1),决定系数为0.882。最后,将精度较好的LSSA-CBR模型应用于卫星Planet影像中,以评估河流叶绿素a和总悬浮物的空间分布情况。研究结果可为环保部门快速了解城市河流水质分布及进行水质评价与管理提供参考。 展开更多
关键词 叶绿素a 总悬浮物 集成学习模型 Levy飞行—麻雀搜索算法 城市河流
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
5
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 Stacking集成学习
在线阅读 下载PDF
基于多粒度集成学习的地震相聚类分析技术
6
作者 罗红梅 王长江 +3 位作者 杨培杰 管晓燕 周小杰 余航 《应用科学学报》 北大核心 2025年第4期643-655,共13页
为了更有效地降低地质结构差异对储层预测的影响,提出了一种基于多粒度集成学习的地震相聚类分析技术。首先从粗粒度、细粒度和微粒度三个角度分别提取地震数据的不同尺度特征。粗粒度特征利用斯皮尔曼相关系数反映地层间的宏观关系;细... 为了更有效地降低地质结构差异对储层预测的影响,提出了一种基于多粒度集成学习的地震相聚类分析技术。首先从粗粒度、细粒度和微粒度三个角度分别提取地震数据的不同尺度特征。粗粒度特征利用斯皮尔曼相关系数反映地层间的宏观关系;细粒度特征基于长短期记忆网络学习波形之间的细节特性;微粒度特征则基于动态时间规整距离捕捉单一波形的微观差异。在此基础上,利用自组织映射方法获得不同粒度下的聚类结果,并采用基于软配准的集成学习技术融合不同粒度下的聚类结果,有效解决了单一粒度受地质结构差异影响较大的问题。实验结果表明,所提出的多粒度集成学习算法能够更好地改善地震相聚类结果,并为不同区域的储层预测提供有效参考。 展开更多
关键词 地震相聚类分析 多粒度 集成学习 动态时间规整 自组织映射
在线阅读 下载PDF
基于堆叠集成学习的履带车辆液力机械综合传动装置功率损失预测
7
作者 李慎龙 张金豹 +2 位作者 王立勇 张金乐 王敏 《兵工学报》 北大核心 2025年第11期107-115,共9页
功率损失是评估履带车辆液力机械综合传动装置性能的关键参数之一。通过预测不同工作条件下的功率损失,可以更全面地评价液力机械综合传动装置的效能,从而确保履带车辆具有良好的机动性。提出一种基于堆叠集成学习的方法,用于预测液力... 功率损失是评估履带车辆液力机械综合传动装置性能的关键参数之一。通过预测不同工作条件下的功率损失,可以更全面地评价液力机械综合传动装置的效能,从而确保履带车辆具有良好的机动性。提出一种基于堆叠集成学习的方法,用于预测液力机械综合传动装置在多种工况下的功率损失。研究利用75辆履带车辆液力机械综合传动装置的多工况效率数据,通过堆叠的方式集成随机森林、LightGBM、AdaBoost、CatBoost与XgBoost等多种算法,实现对液力机械综合传动装置功率损失的有效预测。运用夏普利加性解释值分析各个因素以及各模型对于功率损失预测的影响程度。实验结果显示,训练集功率损失预测结果的均方根误差为6.6,拟合优度达到0.976;在测试集中,这些指标分别为8.920和0.961。进一步分析发现,输入扭矩是影响功率损失的主要因素,且在堆叠集成框架中,随机森林算法对提高预测精度贡献最大。 展开更多
关键词 液力机械综合传动装置 功率损失预测 堆叠集成学习 贡献解释
在线阅读 下载PDF
基于集成学习的业务流程异常检测与定位方法
8
作者 赵海燕 付建平 +2 位作者 关威 曹健 陈庆奎 《计算机集成制造系统》 北大核心 2025年第5期1651-1662,共12页
在业务流程执行中,可能会出现各种异常情况,从而给企业组织带来风险,导致巨大的损失。为了检测事件日志中的异常轨迹,并定位轨迹中的异常活动,提出一种结合启发式挖掘算法和自编码器模型的集成学习框架。首先,使用启发式挖掘算法来挖掘... 在业务流程执行中,可能会出现各种异常情况,从而给企业组织带来风险,导致巨大的损失。为了检测事件日志中的异常轨迹,并定位轨迹中的异常活动,提出一种结合启发式挖掘算法和自编码器模型的集成学习框架。首先,使用启发式挖掘算法来挖掘流程模型并提取主干。基于主干对事件日志进行重叠采样,并针对每个子事件日志训练自编码器模型。若某个轨迹无法匹配任何一条主干,或者被所有自编码器模型检测为异常,则该轨迹将被检测为异常。此外,通过对异常轨迹与其匹配的主干进行分析,可以确定引起异常的具体活动,并进一步采取相应的措施进行修复或优化。实验证明,该方法能够高效地检测业务流程中的异常,并能有效地定位轨迹中的异常活动。 展开更多
关键词 业务流程 异常检测 集成学习 流程挖掘 事件日志 自编码器
在线阅读 下载PDF
高维小样本下煤与瓦斯突出集成学习预测模型
9
作者 王超 张绍源 +4 位作者 刘宇 亓帅 金子浚 喻豪 宋大钊 《矿业科学学报》 北大核心 2025年第5期890-899,共10页
煤与瓦斯突出预测数据具有高维、小样本等特征,给预测建模带来巨大挑战。针对这一问题,通过构建包含瓦斯压力、瓦斯含量、煤体破坏类型等7个指标的60组样本数据库,采用排列重要性降维方法进行特征降维,筛选出5个关键特征(瓦斯放散初速... 煤与瓦斯突出预测数据具有高维、小样本等特征,给预测建模带来巨大挑战。针对这一问题,通过构建包含瓦斯压力、瓦斯含量、煤体破坏类型等7个指标的60组样本数据库,采用排列重要性降维方法进行特征降维,筛选出5个关键特征(瓦斯放散初速度、煤层厚度、瓦斯含量、瓦斯压力和煤的坚固系数),以减少弱相关特征对预测建模的影响;选取支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)、逻辑回归(LR)和梯度提升算法(XGBoost)作为基学习器,XGBoost为元学习器构建Stacking集成模型,并结合贝叶斯优化(BO)算法对模型超参数进行全局寻优,构建一种煤与瓦斯突出预测的BO-Stacking集成模型,并采用沙普利加和解释(SHAP)方法对模型预测结果进行可解释性分析。结果表明:经过特征降维后的BO-Stacking模型准确率、F1值、Kappa系数和AUC值分别为92.4%、0.956、0.927和0.969,均优于各单一模型的预测性能;各特征指标对预测结果的影响大小排序为瓦斯放散初速度>瓦斯含量>瓦斯压力>煤的坚固系数>煤层厚度。BO-Stacking集成学习模型具有良好的预测性能和稳定性,为煤与瓦斯突出预测提供了一种新方法。 展开更多
关键词 煤与瓦斯突出预测 特征降维 Stacking集成学习 贝叶斯优化 SHAP可解释性
在线阅读 下载PDF
基于贝叶斯优化集成学习的矿井通风阻变型故障诊断
10
作者 李兵磊 孙妍 +3 位作者 张化进 宋方家 龙翼 蔡和 《金属矿山》 北大核心 2025年第5期195-203,共9页
通风阻变型故障会导致矿井风流供需失衡,影响矿山生产安全。针对目前机器学习易误判和陷入局部最优解的问题,提出了基于贝叶斯优化集成学习的矿井通风阻变型故障诊断方法,提升模型的准确性和稳健性。基于矿井通风网络故障诊断数据集,构... 通风阻变型故障会导致矿井风流供需失衡,影响矿山生产安全。针对目前机器学习易误判和陷入局部最优解的问题,提出了基于贝叶斯优化集成学习的矿井通风阻变型故障诊断方法,提升模型的准确性和稳健性。基于矿井通风网络故障诊断数据集,构建了6种代表性集成学习模型,并通过贝叶斯算法优化其超参数,最后系统分析了集成学习在矿井通风阻变型故障诊断中的可行性和适用性。仿真试验结果表明:贝叶斯优化集成学习方法可有效辨识和诊断矿井通风阻变型故障,其中极度随机树、XGBoost、LightGBM模型诊断准确率为100%,明显优于常见的机器学习模型。综合模型准确性和确定性程度看,推荐采用XGBoost与Light GBM算法进行矿井通风阻变型故障诊断,其诊断准确率高,不确定性程度低,可为矿井智能化通风提供理论依据与方法指导。 展开更多
关键词 矿井通风 故障诊断 机器学习 集成学习 贝叶斯优化
在线阅读 下载PDF
基于LLaMa3和Choquet积分的最优相似度选择集成学习方法
11
作者 付超 余良菊 常文军 《计算机科学》 北大核心 2025年第9期80-87,共8页
为了在多分类器集成过程中筛选和赋权存在相关关系的基分类器,提出了一种基于LLaMa3和Choquet积分的最优相似度选择集成方法(LCOS-SELM)。首先在开源大模型LLaMa3的基础上,通过少量标注样本数据进行提示词学习,以实现非结构化文本的关... 为了在多分类器集成过程中筛选和赋权存在相关关系的基分类器,提出了一种基于LLaMa3和Choquet积分的最优相似度选择集成方法(LCOS-SELM)。首先在开源大模型LLaMa3的基础上,通过少量标注样本数据进行提示词学习,以实现非结构化文本的关键特征提取。然后,通过Choquet积分融合存在相关关系的分类器预测结果,并评估其相关关系以优化分类器选择。最后,采用最优相似度策略学习分类器权重,在确保样本一致性的同时,提升集成方法的性能。将LCOS-SELM用于克罗恩病的辅助诊断,以合肥市某三甲医院的297份检查报告为基础进行实验,通过与内镜检查报告进行比对,验证了所提方法的有效性。在相同实验条件下将LCOS-SELM与单分类器和传统集成模型进行实验对比,结果显示:在相同实验条件下,与单分类器相比,LCOS-SELM在Acc,F1和AUC指标上均提升了约8%;与传统集成模型相比,LCOS-SELM在3个指标上均提升了约2%,进一步验证了其性能优势。 展开更多
关键词 选择集成学习 LLaMa3 CHOQUET积分 权重学习 相似案例学习
在线阅读 下载PDF
基于多特征融合与集成学习的风机叶片缺陷检测方法
12
作者 王瑞 汤占军 《计算机科学》 北大核心 2025年第S1期458-465,共8页
针对无人机在风机叶片表面缺陷检测中遇到的复杂特征处理和多形式缺陷表现不佳的问题,提出了一种基于多特征融合与集成学习的风机叶片缺陷检测方法。该方法通过提取局部LBP特征、HOG特征以及胶囊网络的高级特征,并将其进行有效融合,构... 针对无人机在风机叶片表面缺陷检测中遇到的复杂特征处理和多形式缺陷表现不佳的问题,提出了一种基于多特征融合与集成学习的风机叶片缺陷检测方法。该方法通过提取局部LBP特征、HOG特征以及胶囊网络的高级特征,并将其进行有效融合,构建了一个多特征提取模型,以获取更深入的细节信息。同时,选择了3种具有不同偏差和方差特性的基础分类器——支持向量机(SVM)、k近邻算法(KNN)和决策树(DT),通过整合不同基模型的优势,建立异质集成学习模型,从而提升了模型的整体性能。在风机叶片表面缺陷图像数据集上对模型(MFEM)进行了验证,实验结果表明,该方法的平均精确度(MAP)最高达到98%,相比于YOLOv7和Faster R-CNN分别提高了3.1%和5.8%,对比SVM,KNN和DT 3类基模型有较大提升。此外,通过消融实验对不同模块的有效性进行了验证。实验结果表明,提出的多特征融合与集成学习模型(MFEM)在风机叶片缺陷检测任务中表现出了优良的性能。 展开更多
关键词 无人机 风机叶片 缺陷检测 多特征融合 集成学习 胶囊网络
在线阅读 下载PDF
基于集成学习的交通事故严重程度预测
13
作者 贾现广 宋腾飞 吕英英 《现代电子技术》 北大核心 2025年第16期61-66,共6页
为提升道路交通事故严重程度预测模型的性能,以及分析事故特征对于事故严重程度的影响,提出一种基于双层Stacking模型的交通事故严重程度预测方法。首先,采用BSMOTE2算法来平衡数据,并验证数据平衡处理是否会对模型预测产生正向影响,同... 为提升道路交通事故严重程度预测模型的性能,以及分析事故特征对于事故严重程度的影响,提出一种基于双层Stacking模型的交通事故严重程度预测方法。首先,采用BSMOTE2算法来平衡数据,并验证数据平衡处理是否会对模型预测产生正向影响,同时利用GBDT-RFECV算法进行k折交叉验证选择,完成特征降维。其次,构建双层Stacking模型,第一层由BiGRU和XGBoost组成,将时间序列特征用于BiGRU,静态特征用于XGBoost进行初步预测;第二层采用CatBoost模型,结合第一层的预测结果进行最终的严重程度预测。研究结果表明:模型的准确率、宏F_(1)和宏AUC均有明显提高,表明数据平衡处理对模型预测产生正向影响;相较于KNN、BiGRU、RF和XGBoost模型,所提双层Stacking模型的预测准确率分别提高了5.45%、10.23%、1.78%和2.34%,宏F_(1)值提高了5.31%、9.91%、1.35%和1.92%,宏AUC提高了11.13%、6.97%、2.13%和2.71%。该双层Stacking模型在多个评估指标上的表现均优于其他模型。 展开更多
关键词 交通安全 交通事故预测 预测分析 集成学习 机器学习 深度学习 特征降维
在线阅读 下载PDF
基于高光谱数据和Stacking集成学习算法的金矿品位快速反演
14
作者 毛亚纯 夏安妮 +4 位作者 曹旺 刘晶 文杰 贺黎明 陈煊赫 《光谱学与光谱分析》 北大核心 2025年第7期2061-2067,共7页
金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药... 金矿资源具有重要的经济和金融价值,不仅为国家提供了贵重的金属资源,推动经济增长,还在增强货币稳定性和国际金融市场中的避险能力方面具有现实意义。然而,当前矿山用于金矿品位测量的化学分析法尽管精确,但存在耗时长、成本高以及药剂污染等多种问题,无法实现基于实时品位信息的矿石品位与选矿方法的自动化调整。相比之下,可见光-近红外光谱分析法因其高效、绿色环保及原位测定等优势,逐渐成为估算矿区金属品位的有效替代方法。为此以中国辽宁省二道沟、凌源和排山楼三个金矿为研究区,共采集了389个金矿样本,以SVC便携式地物光谱仪测试的高光谱数据和化学分析数据为数据源。首先对原始光谱数据进行Savitzky-Golay平滑(SG)处理,并分析金矿的光谱特征,发现反射率与金品位具有一定相关性,且在455 nm处具有金的吸收特征,基于此,利用主成分分析法(PCA)、等距特征映射(ISOMAP)和局部线性嵌入(LLE)算法对原始光谱数据进行降维处理,对应降维结果的维数分别为6,5,5。最后基于随机森林(RF)、极端随机树(ET)、决策树(DT)、梯度提升树(GBDT)和自适应增强(Adaboost)、极端梯度提升树(XGBoost)和Stacking集成学习算法对降维后的数据建立了金品位预测模型。研究结果表明,Stacking集成学习方法在各方面性能均优于单一模型,其中LLE-Stacking组合模型的精度最高,预测值与真实值的R^(2)为0.972,RPD为5.935,平均相对误差为0.231。利用本方法可以快速准确预测矿粉中金的品位,相比于传统模型的品位反演精度有明显的提升,为矿山金品位的快速、原位测定提供了新的技术手段,对金矿的高效开采具有重要意义。 展开更多
关键词 金矿品位反演 可见光-近红外光谱 降维 Stacking集成学习
在线阅读 下载PDF
基于集成学习强化BPNN的掘进工作面温度预测模型
15
作者 马恒 张世龙 高科 《工矿自动化》 北大核心 2025年第8期88-94,158,共8页
针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随... 针对现有掘进工作面温度预测方法存在预测模型泛化性不强、鲁棒性较差,且对非线性多维数据的预测能力有限的问题,提出了一种基于集成学习强化反向传播神经网络(BPNN)的掘进工作面温度预测模型,即t−SNE−BPNN−AdaBoost。首先采用t−分布随机邻域嵌入(t−SNE)非线性降维技术,将通风机前风量、温度、相对湿度等7项高维特征降至3维,保留数据局部结构并去除噪声。然后将降维数据输入BPNN作为基分类器,经迭代训练得到初步模型。最后通过自适应推进算法(AdaBoost)集成学习,迭代训练多个BPNN弱分类器并加权组合为强分类器,增强模型泛化能力。将60组掘进工作面实测数据按8∶2划分为训练集与测试集,经5折交叉验证确定AdaBoost最优弱学习器数量为30。实验结果表明:①t−SNE−BPNN−AdaBoost预测曲线和真实值贴合度最优,整体误差小,在温度突变区段适应力强,稳定性远超SVM,BPNN和t−SNE−BPNN。②t−SNE−BPNN−AdaBoost的预测相对误差最小,几乎在5%以内,表现出最优的预测精度。③在测试集上,t−SNE−BPNN−AdaBoost的决定系数为0.9784,较SVM,BPNN,t−SNE−BPNN分别提高了60.3%,17.2%,8.1%;平均绝对误差为0.1676,均方误差为0.0567,平均绝对百分比误差为0.9640,指标均显著优于SVM,BPNN和t−SNE−BPNN,在温度突变区段适应性更强。 展开更多
关键词 掘进工作面温度预测 t−分布随机邻域嵌入 BP神经网络 t−SNE 自适应推进算法 AdaBoost集成学习 5折交叉验证
在线阅读 下载PDF
电潜泵剩余使用寿命预测集成学习算法研究
16
作者 郑文培 周少杰 +1 位作者 王颖君 周涛涛 《电子测量与仪器学报》 北大核心 2025年第3期13-20,共8页
电潜泵采油是目前海上油田最主要的采油方式之一,其故障会影响油井正常生产运行并造成经济损失,因此,进行电潜泵剩余使用寿命预测与故障预防尤为重要。为保障电潜泵优质运行,根据电潜泵的数据特征,提出一种基于集成学习模型的剩余使用... 电潜泵采油是目前海上油田最主要的采油方式之一,其故障会影响油井正常生产运行并造成经济损失,因此,进行电潜泵剩余使用寿命预测与故障预防尤为重要。为保障电潜泵优质运行,根据电潜泵的数据特征,提出一种基于集成学习模型的剩余使用寿命预测方法。首先计算各时间点剩余使用寿命作为标签函数,利用随机森林算法筛选高贡献度特征参数输入模型,构建由麻雀搜索算法-卷积神经网络(SSA-CNN)和麻雀搜索算法-长短期记忆(SSA-LSTM)两个基模型经绝对误差加权组成的集成模型。现场数据验证表明,两个基模型算法在不同情况下具备各自的优势和劣势,SSA-CNN在数据波动期更具优势,SSA-LSTM整体预测更为准确,将相同数据代入集成模型中,发现集成模型的预测误差明显小于两个基模型的预测误差兼具两者优势,在整体精度和变化阶段的评估准确率方面均有显著改善。实际算例验证表明,集成模型的预测精度相较基模型提升6.41%,较现有方法有显著提升,具备较强的鲁棒性和稳定性。 展开更多
关键词 电潜泵 SSA-CNN SSA-LSTM 集成学习模型
在线阅读 下载PDF
融合属性编码与集成学习的混合推荐算法
17
作者 邱宁佳 董伟杰 《计算机工程与设计》 北大核心 2025年第2期508-514,共7页
为解决传统推荐算法对用户与物品的基础属性信息利用不充分,以及使用单一推荐算法导致推荐模型表达能力不足的问题。提出一种融合属性编码与集成学习的混合推荐算法。利用轻量的梯度提升机算法对用户与物品的基本属性信息进行融合编码处... 为解决传统推荐算法对用户与物品的基础属性信息利用不充分,以及使用单一推荐算法导致推荐模型表达能力不足的问题。提出一种融合属性编码与集成学习的混合推荐算法。利用轻量的梯度提升机算法对用户与物品的基本属性信息进行融合编码处理,丰富数据特征多样性;将线性算法与非线性算法混合作为基本模型,采用袋装的方式进行集成,提高算法模型推荐效果。实验结果表明,该混合推荐算法在多个评估标准上相比传统算法均有改善和提升。 展开更多
关键词 混合推荐算法 集成学习 特征编码 特征融合 特征剪枝 自助采样 并行训练
在线阅读 下载PDF
基于元学习和集成学习的高熵合金相预测算法
18
作者 侯帅 李玉娇 +2 位作者 白梅娟 孙梦玥 石修志 《计算机应用与软件》 北大核心 2025年第6期302-310,共9页
准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成... 准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成学习性能的映射关系,来推荐合适的集成算法;后者采用基于单体精度约束的人工蜂群算法来提高集成学习的准确率。实验结果表明,该算法的预测性能要优于其他选择性集成学习算法。 展开更多
关键词 高熵合金 相预测 学习 集成学习 人工蜂群算法
在线阅读 下载PDF
基于集成学习算法的尾气处理装置SO_(2)排放预测模型 被引量:2
19
作者 张宝东 杜支文 +1 位作者 闫昭 侯磊 《石油与天然气化工》 北大核心 2025年第1期9-17,共9页
目的精确预测天然气净化厂尾气处理装置烟气中二氧化硫(SO_(2))排放质量浓度。方法利用某天然气净化厂2018—2023年每小时44000条尾气处理日报数据构建数据集,进行数据处理,并利用重要性分析方法提取27个重要特征。针对烟气中SO_(2)排... 目的精确预测天然气净化厂尾气处理装置烟气中二氧化硫(SO_(2))排放质量浓度。方法利用某天然气净化厂2018—2023年每小时44000条尾气处理日报数据构建数据集,进行数据处理,并利用重要性分析方法提取27个重要特征。针对烟气中SO_(2)排放质量浓度的预测任务,采用了随机森林(Random Forest)、梯度提升(Gradient Boost)和极值梯度提升(XGBoost)3种集成学习算法,以及基于径向基(RBF)内核的支持向量机(SVM)替代仿真模型进行建模。结果3种集成学习模型比SVM单模型的预测效果更为精准,而Random Forest模型展现出最佳性能,决定系数为0.89,均方误差为1250.59,相对于8800个真实测试集样本数据,其预测偏差为9.86%,相比于Random Forest模型(数据未处理),其决定系数提高了61.82%。结论Random Forest模型在准确预测尾气处理装置SO_(2)排放质量浓度方面具有实际生产应用价值,可为后续尾气处理装置的工艺参数优化提供可靠的模型支持。 展开更多
关键词 天然气净化 硫磺回收 尾气处理 二氧化硫排放 预测模型 集成学习算法
在线阅读 下载PDF
基于集成学习的混凝土抗压强度预测模型研究 被引量:1
20
作者 周继发 曾晓辉 +8 位作者 郑振华 涂金根 郭桃明 孙晗凌 谢友均 龙广成 唐卓 郭宏 潘自立 《中南大学学报(自然科学版)》 北大核心 2025年第5期1981-1992,共12页
为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;... 为准确预测混凝土抗压强度,利用灰狼优化算法(GWO)对轻量级梯度提升机(LGBM)的超参数进行优化。首先,以水胶比、矿渣替代比例、粉煤灰替代比例、高性能减水剂占胶凝材料比例、砂率和龄期为输入,以抗压强度为输出,构建GWO-LGBM预测模型;其次,评估模型在训练集和测试集上的效果,验证GWO对LGBM超参数优化的有效性;第三,将模型应用于全新数据,检验其泛化能力;最后,基于GWO-LGBM模型分析各输入参数对抗压强度的影响,验证模型的预测合理性。研究结果表明:GWOLGBM模型在训练集和测试集中混凝土抗压强度预测的均方根误差分别为1.68 MPa和3.49 MPa,预测值与实际值的拟合度分别达到0.99和0.95,解决了LGBM易陷入局部最优的问题;模型迁移到全新数据集时,83%的数据预测相对误差小于10%,展现出较强的泛化能力。水胶比增大会降低混凝土抗压强度;矿渣和粉煤灰掺量增加会降低混凝土早期强度,对后期强度影响较小;当水胶比一定时,存在一个最佳砂率使抗压强度最大;模型捕获结果与影响抗压强度的理论结果一致,验证了其预测结果的合理性。 展开更多
关键词 混凝土 抗压强度 集成学习 轻量级梯度提升机 灰狼优化算法
在线阅读 下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部